Advertisement

Calculations for Jets: The Jet Mass Distribution

  • Simone Marzani
  • Gregory Soyez
  • Michael Spannowsky
Chapter
  • 343 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 958)

Abstract

One of our main goal in this book is to connect the phenomenology of jet substructure to analytic calculations in QCD. This Chapter studies an important example: the jet mass distribution. This simple and typical property of a jet allows us to discuss the need for all-order calculations in the boosted regime and to introduce resummation techniques which will be used repeatedly for all the more advanced jet substructure tools we study in later chapters.

References

  1. 15.
    S. Catani, B.R. Webber, G. Marchesini, QCD coherent branching and semiinclusive processes at large x. Nucl. Phys. B349, 635–654 (1991)ADSCrossRefGoogle Scholar
  2. 16.
    S. Catani, L. Trentadue, G. Turnock, B.R. Webber, Resummation of large logarithms in e + e event shape distributions. Nucl. Phys. B407, 3–42 (1993)ADSCrossRefGoogle Scholar
  3. 24.
    J.R. Forshaw, A. Kyrieleis, M. Seymour, Super-leading logarithms in non-global observables in QCD. J. High Energy Phys. 0608, 059 (2006) . [hep-ph/0604094]Google Scholar
  4. 25.
    J. Forshaw, A. Kyrieleis, M. Seymour, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation. J. High Energy Phys. 0809, 128 (2008). [0808.1269]CrossRefGoogle Scholar
  5. 56.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C72, 1896 (2012). [1111.6097]Google Scholar
  6. 79.
    M. Dasgupta, L. Magnea, G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders. J. High Energy Phys. 0802, 055 (2008). [0712.3014]CrossRefGoogle Scholar
  7. 80.
    S. Catani, G. Turnock, B. Webber, L. Trentadue, Thrust distribution in e+ e- annihilation. Phys. Lett. B263, 491–497 (1991)ADSCrossRefGoogle Scholar
  8. 81.
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics. Sov. Phys. J. Exp. Theor. Phys. 3, 65–71 (1956)MathSciNetzbMATHGoogle Scholar
  9. 82.
    B. Andersson, G. Gustafson, L. Lönnblad, U. Pettersson, Coherence effects in deep inelastic scattering. Z. Phys. C43, 625 (1989)ADSGoogle Scholar
  10. 83.
    M. Dasgupta, G. Salam, Resummation of nonglobal QCD observables. Phys. Lett. B512, 323–330 (2001) . [hep-ph/0104277]Google Scholar
  11. 84.
    S. Catani, M. Ciafaloni, Many-gluon correlations and the quark form factor in QCD. Nucl. Phys. B236, 61 (1984)ADSCrossRefGoogle Scholar
  12. 85.
    Y.L. Dokshitzer, G. Marchesini, G. Oriani, Measuring color flows in hard processes: beyond leading order. Nucl. Phys. B387, 675–714 (1992)ADSCrossRefGoogle Scholar
  13. 86.
    E. Farhi, A QCD test for jets. Phys. Rev. Lett. 39, 1587–1588 (1977)ADSCrossRefGoogle Scholar
  14. 87.
    M. Dasgupta, G.P. Salam, Accounting for coherence in interjet E(t) flow: a case study. J. High Energy Phys. 03, 017 (2002). [hep-ph/0203009]CrossRefGoogle Scholar
  15. 88.
    A. Bassetto, M. Ciafaloni, G. Marchesini, Jet structure and infrared sensitive quantities in perturbative QCD. Phys. Rept. 100, 201–272 (1983)ADSCrossRefGoogle Scholar
  16. 89.
    M. Dasgupta, G.P. Salam, Resummed event shape variables in DIS. J. High Energy Phys. 08, 032 (2002). [hep-ph/0208073]CrossRefGoogle Scholar
  17. 92.
    A. Banfi, M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes. J. High Energy Phys. 1008, 064 (2010). 1004.3483]Google Scholar
  18. 93.
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani, M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC. J. High Energy Phys. 1210, 126 (2012). [1207.1640]Google Scholar
  19. 94.
    A. Banfi, G. Marchesini, G. Smye, Away from jet energy flow. J. High Energy Phys. 0208, 006 (2002) . [hep-ph/0206076]Google Scholar
  20. 95.
    G. Marchesini, A. Mueller, BFKL dynamics in jet evolution. Phys. Lett. B575, 37–44 (2003). [hep-ph/0308284]ADSCrossRefGoogle Scholar
  21. 96.
    I. Balitsky, Operator expansion for high-energy scattering. Nucl. Phys. B463, 99–160 (1996). [hep-ph/9509348]Google Scholar
  22. 97.
    Y.V. Kovchegov, Small × F(2) structure function of a nucleus including multiple pomeron exchanges, Phys. Rev. D60, 034008 (1999). [hep-ph/9901281]Google Scholar
  23. 98.
    E. Avsar, Y. Hatta and T. Matsuo, Soft gluons away from jets: Distribution and correlation, J. High Energy Phys. 0906, 011 (2009). [0903.4285]CrossRefGoogle Scholar
  24. 99.
    Y. Hatta, T. Ueda, Jet energy flow at the LHC. Phys. Rev. D80, 074018 (2009) . [0909.0056]Google Scholar
  25. 100.
    J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime. Phys. Rev. D59, 014014 (1998). [hep-ph/9706377]Google Scholar
  26. 101.
    E. Iancu, A. Leonidov, L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1. Nucl. Phys. A692, 583–645 (2001) . [hep-ph/0011241]Google Scholar
  27. 102.
    H. Weigert, Nonglobal jet evolution at finite N(c). Nucl. Phys. B685, 321–350 (2004). [hep-ph/0312050]Google Scholar
  28. 103.
    Y. Hatta, T. Ueda, Resummation of non-global logarithms at finite N c. Nucl. Phys. B874, 808–820 (2013). [1304.6930]Google Scholar
  29. 104.
    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation. J. High Energy Phys. 03, 036 (2018). [1501.03754]Google Scholar
  30. 105.
    R. Ángeles Martínez, M. De Angelis, J.R. Forshaw, S. Plätzer, M.H. Seymour, Soft gluon evolution and non-global logarithms. J. High Energy Phys. 05, 044 (2018), [1802.08531]Google Scholar
  31. 106.
    J. Forshaw, J. Keates, S. Marzani, Jet vetoing at the LHC. J. High Energy Phys. 0907, 023 (2009) . [0905.1350]CrossRefGoogle Scholar
  32. 107.
    R.M.D. Delgado, J.R. Forshaw, S. Marzani, M.H. Seymour, The dijet cross section with a jet veto. J. High Energy Phys. 08, 157 (2011). [1107.2084]Google Scholar
  33. 108.
    A.J. Larkoski, I. Moult, D. Neill, Non-global logarithms, factorization, and the soft substructure of jets. J. High Energy Phys. 09, 143 (2015). [1501.04596]Google Scholar
  34. 112.
    M. Balsiger, T. Becher, D.Y. Shao, NLL resummation of jet mass (2019). 1901.09038Google Scholar
  35. 113.
    C. Lee, G.F. Sterman, Universality of nonperturbative effects in event shapes. eConf C0601121, A001 (2006) . [hep-ph/0603066]Google Scholar
  36. 114.
    I.W. Stewart, F.J. Tackmann, W.J. Waalewijn, Dissecting soft radiation with factorization. Phys. Rev. Lett. 114, 092001 (2015). [1405.6722]Google Scholar
  37. 115.
    Y.L. Dokshitzer, B. Webber, Power corrections to event shape distributions. Phys. Lett. B404, 321–327 (1997) . [hep-ph/9704298]Google Scholar
  38. 116.
    G. Salam, D. Wicke, Hadron masses and power corrections to event shapes. J. High Energy Phys. 0105, 061 (2001) . [hep-ph/0102343]Google Scholar
  39. 117.
    S. Catani, M.L. Mangano, P. Nason, L. Trentadue, The resummation of soft gluon in hadronic collisions. Nucl. Phys. B478, 273–310 (1996) . [hep-ph/9604351]Google Scholar
  40. 118.
    N. Kidonakis, G. Oderda, G.F. Sterman, Evolution of color exchange in QCD hard scattering. Nucl. Phys. B531, 365–402 (1998). [hep-ph/9803241]ADSCrossRefGoogle Scholar
  41. 119.
    M. Diehl, J.R. Gaunt, Double parton scattering theory overview. Adv. Ser. Direct. High Energy Phys. 29, 7–28 (2018). [1710.04408]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Simone Marzani
    • 1
  • Gregory Soyez
    • 2
  • Michael Spannowsky
    • 3
  1. 1.Dipartimento di FisicaUniversità di GenovaGenovaItaly
  2. 2.Institut de Physique TheoriqueCNRS UMR 3681, CEA SaclayGif-sur-Yvette cedexFrance
  3. 3.Department of Physics, Institute for Particle Physics PhenomenologyDurham UniversityDurhamUK

Personalised recommendations