Advertisement

Jets and Jet Algorithms

  • Simone Marzani
  • Gregory Soyez
  • Michael Spannowsky
Chapter
  • 348 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 958)

Abstract

There is no jet substructure without jets. Jets are ubiquitous objects in collider physics, which have been used for 40 years. This Chapter discusses the concept jets as collimated sprays of particles (or flows of energy). It also introduces the algorithms which are used for their practical definitions, basic experimental aspects and the software implementation.

References

  1. 42.
    G.F. Sterman, S. Weinberg, Jets from quantum chromodynamics. Phys.Rev.Lett. 39, 1436 (1977)ADSCrossRefGoogle Scholar
  2. 52.
    A.J. Larkoski, D. Neill, J. Thaler, Jet shapes with the broadening axis. J. High Energy Phys. 1404, 017 (2014). [1401.2158]Google Scholar
  3. 53.
    P.E.L. Rakow, B.R. Webber, Transverse momentum moments of Hadron distributions in QCD jets. Nucl. Phys. B191, 63–74 (1981)ADSCrossRefGoogle Scholar
  4. 54.
    G.P. Salam, Towards jetography. Eur. Phys. J. C67, 637–686 (2010). [0906.1833]Google Scholar
  5. 55.
    J.E. Huth et al., Toward a standardization of jet definitions, in 1990 DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90) Snowmass, Colorado, June 25–July 13, 1990 (1990), pp. 0134–136Google Scholar
  6. 56.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C72, 1896 (2012). [1111.6097]Google Scholar
  7. 57.
    S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Longitudinally-invariant k -clustering algorithms for hadron–hadron collisions. Nucl. Phys. B406, 187–224 (1993)ADSCrossRefGoogle Scholar
  8. 58.
    S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D48, 3160–3166 (1993) . [hep-ph/9305266]Google Scholar
  9. 59.
    JADE collaboration, W. Bartel et al., Experimental studies on multijet production in e + e annihilation at PETRA energies. Z. Phys. C33, 23 (1986)Google Scholar
  10. 60.
    JADE collaboration, S. Bethke et al., Experimental investigation of the energy dependence of the strong coupling strength. Phys. Lett. B213, 235–241 (1988)Google Scholar
  11. 61.
    Y.L. Dokshitzer, G. Leder, S. Moretti, B. Webber, Better jet clustering algorithms. J. High Energy Phys. 9708, 001 (1997) . [hep-ph/9707323]Google Scholar
  12. 62.
    M. Wobisch, T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering (1998). hep-ph/9907280Google Scholar
  13. 63.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-k(t) jet clustering algorithm. J. High Energy Phys. 04, 063 (2008). [0802.1189]Google Scholar
  14. 64.
    M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets. J. High Energy Phys. 04, 005 (2008) . [0802.1188]Google Scholar
  15. 65.
    F.A. Dreyer, G.P. Salam, G. Soyez, The Lund jet plane. J. High Energy Phys. 12, 064 (2018). [1807.04758]Google Scholar
  16. 66.
    CDF collaboration, F. Abe et al., The topology of three jet events in \(\bar {p}p\) collisions at \(\sqrt {s} = 1.8\) TeV. Phys. Rev. D45, 1448–1458 (1992)Google Scholar
  17. 67.
    G.C. Blazey et al., Run II jet physics, in QCD and Weak Boson Physics in Run II. Proceedings, Batavia, March 4–6, June 3–4, November 4–6, 1999 (2000), pp. 47–77. hep-ex/0005012Google Scholar
  18. 68.
    D0 collaboration, V.M. Abazov et al., Measurement of the inclusive jet cross section in \(p \bar {p}\) collisions at \(\sqrt {s}=1.96\) TeV. Phys. Rev. D85, 052006 (2012). [1110.3771]Google Scholar
  19. 69.
    G.P. Salam, G. Soyez, A practical seedless infrared-safe cone jet algorithm. J. High Energy Phys. 05, 086 (2007) . [0704.0292]Google Scholar
  20. 70.
    CMS collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector, CMS-PAS-PFT-10-001Google Scholar
  21. 71.
    CMS collaboration, Commissioning of the particle-flow reconstruction in minimum-bias and jet events from pp collisions at 7 TeV (2010). CMS-PAS-PFT-10-002Google Scholar
  22. 72.
    Particle Data Group collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D98, 030001 (2018)Google Scholar
  23. 73.
    ATLAS collaboration, G. Aad et al., Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC. Eur. Phys. J. C73, 2305 (2013). [1203.1302]Google Scholar
  24. 74.
  25. 75.
    ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN large Hadron collider. J. Instrum. 3, S08003 (2008)Google Scholar
  26. 76.
    ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC. New J. Phys. 13, 053033 (2011). [1012.5104]Google Scholar
  27. 77.
    M. Cacciari, G.P. Salam, Dispelling the N 3 myth for the k t jet-finder. Phys. Lett. B641, 57–61 (2006). [hep-ph/0512210]Google Scholar
  28. 78.
    J.M. Butterworth, J.P. Couchman, B.E. Cox, B.M. Waugh, KtJet: a C++ implementation of the K-perpendicular clustering algorithm. Comput. Phys. Commun. 153, 85–96 (2003). [hep-ph/0210022]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Simone Marzani
    • 1
  • Gregory Soyez
    • 2
  • Michael Spannowsky
    • 3
  1. 1.Dipartimento di FisicaUniversità di GenovaGenovaItaly
  2. 2.Institut de Physique TheoriqueCNRS UMR 3681, CEA SaclayGif-sur-Yvette cedexFrance
  3. 3.Department of Physics, Institute for Particle Physics PhenomenologyDurham UniversityDurhamUK

Personalised recommendations