Introduction and Motivation

  • Simone Marzani
  • Gregory Soyez
  • Michael Spannowsky
Part of the Lecture Notes in Physics book series (LNP, volume 958)


This Chapter provides a broad introduction to the topic known as jet substructure in the context of today’s collider experiments and particle physics in general. We describe the contents and goals of this book.


  1. 1.
    M.H. Seymour, Tagging a heavy Higgs boson, in ECFA Large Hadron Collider Workshop: Proceedings.2, Aachen, 4–9 October 1990 (1991), pp. 557–569Google Scholar
  2. 4.
    J. Butterworth, B. Cox, J.R. Forshaw, WW scattering at the CERN LHC. Phys. Rev. D65, 096014 (2002). [hep-ph/0201098]Google Scholar
  3. 5.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 100, 242001 (2008). [0802.2470]Google Scholar
  4. 6.
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics. EPHJA, C71, 1661.2011 C71, 1661 (2011). [1012.5412]Google Scholar
  5. 7.
    A. Altheimer, S. Arora, L. Asquith, G. Brooijmans, J. Butterworth et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks. J. Phys. G39, 063001 (2012). [1201.0008]Google Scholar
  6. 9.
    D. Adams et al., Towards an understanding of the correlations in jet substructure. Eur. Phys. J. C75, 409 (2015). [1504.00679]Google Scholar
  7. 10.
    A.J. Larkoski, I. Moult, B. Nachman, Jet substructure at the large Hadron collider: a review of recent advances in theory and machine learning (2017). 1709.04464Google Scholar
  8. 11.
    L. Asquith et al., Jet substructure at the large Hadron collider : experimental review (2018). 1803.06991Google Scholar
  9. 12.
    D.E. Soper, M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC. J. High Energy Phys. 08, 029 (2010). [1005.0417]Google Scholar
  10. 13.
    L.G. Almeida, R. Alon, M. Spannowsky, Structure of fat jets at the tevatron and beyond. Eur. Phys. J. C72, 2113 (2012). [1110.3684]Google Scholar
  11. 14.
    STAR collaboration, K. Kauder, Measurement of the shared momentum fraction z g using jet reconstruction in p+p and Au+Au collisions with STAR. Nucl. Phys. A967, 516–519 (2017). [1704.03046]Google Scholar
  12. 15.
    S. Catani, B.R. Webber, G. Marchesini, QCD coherent branching and semiinclusive processes at large x. Nucl. Phys. B349, 635–654 (1991)ADSCrossRefGoogle Scholar
  13. 16.
    S. Catani, L. Trentadue, G. Turnock, B.R. Webber, Resummation of large logarithms in e + e event shape distributions. Nucl. Phys. B407, 3–42 (1993)ADSCrossRefGoogle Scholar
  14. 17.
    G. Luisoni, S. Marzani, QCD resummation for hadronic final states. J. Phys. G42, 103101 (2015) . [1505.04084]ADSCrossRefGoogle Scholar
  15. 18.
    T. Becher, A. Broggio, A. Ferroglia, Introduction to Soft-Collinear Effective Theory. Lecture Notes in Physics, vol. 896 (2015), pp. 1–206. [1410.1892]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Simone Marzani
    • 1
  • Gregory Soyez
    • 2
  • Michael Spannowsky
    • 3
  1. 1.Dipartimento di FisicaUniversità di GenovaGenovaItaly
  2. 2.Institut de Physique TheoriqueCNRS UMR 3681, CEA SaclayGif-sur-Yvette cedexFrance
  3. 3.Department of Physics, Institute for Particle Physics PhenomenologyDurham UniversityDurhamUK

Personalised recommendations