Skip to main content

Pathophysiology of Hirschsprung’s Disease

  • Chapter
  • First Online:
Hirschsprung's Disease and Allied Disorders

Abstract

Although the more striking histological feature in Hirschsprung’s disease is the absence of ganglion cells, it is unlikely that this is the only cause of the increased intestinal wall tone provoking a functional intestinal obstruction. In the first part of this chapter, we review the normal histological organization of the gut with the different cell types and their interaction accounting for intestinal motility. In the second part, we review the histopathological findings both in the aganglionic segment and in the proximal ganglionic segment in Hirschsprung’s disease which may account for the frequent discrepancy encountered between the length of the nonfunctional bowel and the degree of obstruction and also for the persistent obstructive symptoms after a pull-through operation for Hirschsprung’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costa M, Brookes SJ, Hennig GW. Anatomy and physiology of the enteric nervous system. Gut. 2000;47 Suppl 4:iv15–9. discussion iv26

    CAS  PubMed  Google Scholar 

  2. Olsson C, Holmgren S. The control of gut motility. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(3):481–503.

    Article  CAS  PubMed  Google Scholar 

  3. Sanders K, Ward S, Koh S. Interstitial cells: regulators of smooth muscle function. Physiol Rev. 2014;94(3):859–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takaki M. Gut pacemaker cells: the interstitial cells of Cajal (ICC). J Smooth Muscle Res. 2003;39(5):137–61.

    Article  PubMed  Google Scholar 

  5. Ward SM, Sanders KM, Hirst GD. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil. 2004;16(Suppl 1):112–7.

    Article  PubMed  Google Scholar 

  6. Alberti E, et al. Motility patterns and distribution of interstitial cells of Cajal and nitrergic neurons in the proximal, mid- and distal-colon of the rat. Neurogastroenterol Motil. 2005;17(1):133–47.

    Article  CAS  PubMed  Google Scholar 

  7. Kurahashi M, et al. Platelet-derived growth factor receptor alpha-positive cells in the tunica muscularis of human colon. J Cell Mol Med. 2012;16(7):1397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berthoud HR, et al. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil. 2004;16(Suppl 1):28–33.

    Article  PubMed  Google Scholar 

  9. Nagy N, Goldstein AM. Enteric nervous system development: a crest cell’s journey from neural tube to colon. Semin Cell Dev Biol. 2017;66:94–106.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ganz J. Gut feelings: studying enteric nervous system development, function, and disease in the zebrafish model system. Dev Dyn. 2018;247(2):268–78.

    Article  PubMed  Google Scholar 

  11. Schemann M, Neunlist M. The human enteric nervous system. Neurogastroenterol Motil. 2004;16(Suppl 1):55–9.

    Article  PubMed  Google Scholar 

  12. Furness JB. Types of neurons in the enteric nervous system. J Auton Nerv Syst. 2000;81(1–3):87–96.

    Article  CAS  PubMed  Google Scholar 

  13. Bornstein JC, Furness JB, Kunze WA. Electrophysiological characterization of myenteric neurons: how do classification schemes relate? J Auton Nerv Syst. 1994;48(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  14. Brehmer A, Schrodl F, Neuhuber W. Morphological classifications of enteric neurons – 100 years after Dogiel. Anat Embryol. 1999;200(2):125–35.

    Article  CAS  Google Scholar 

  15. Costa M, et al. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience. 1996;75(3):949–67.

    Article  CAS  PubMed  Google Scholar 

  16. Clerc N, Furness JB. Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol Motil. 2004;16(Suppl 1):24–7.

    Article  PubMed  Google Scholar 

  17. Holzer P. Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain. Neurogastroenterol Motil. 2002;14(5):459–75.

    Article  CAS  PubMed  Google Scholar 

  18. Dockray GJ. Luminal sensing in the gut: an overview. J Physiol Pharmacol. 2003;54(Suppl 4):9–17.

    PubMed  Google Scholar 

  19. Matini P, et al. Nitric oxide producing neurons in the human colon: an immunohistochemical and histoenzymatical study. Neurosci Lett. 1995;193(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  20. Kunze WA, Furness JB. The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol. 1999;61:117–42.

    Article  CAS  PubMed  Google Scholar 

  21. Vantrappen G, et al. The interdigestive motor complex of normal subjects and patients with bacterial overgrowth of the small intestine. J Clin Invest. 1977;59(6):1158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Summers RW, Dusdieker NS. Patterns of spike burst spread and flow in the canine small intestine. Gastroenterology. 1981;81(4):742–50.

    Article  CAS  PubMed  Google Scholar 

  23. Heuckeroth RO. Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol. 2018;15(3):152–67.

    Article  PubMed  Google Scholar 

  24. Meier-Ruge W, Bruder E. Histopathological diagnosis and differential diagnosis in Hirschsprung’s disease. In: Holschneider A, Puri P, editors. Hirschsprung’s disease and allied disorders. Berlin, Heidelberg: Springer; 2008. p. 185–94.

    Chapter  Google Scholar 

  25. Kakita Y, et al. Selective demonstration of mural nerves in ganglionic and aganglionic colon by immunohistochemistry for glucose transporter-1: prominent extrinsic nerve pattern staining in Hirschsprung disease. Arch Pathol Lab Med. 2000;124(9):1314–9.

    CAS  PubMed  Google Scholar 

  26. Kobayashi H, O’Briain DS, Puri P. Nerve growth factor receptor immunostaining suggests an extrinsic origin for hypertrophic nerves in Hirschsprung’s disease. Gut. 1994;35(11):1605–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weinberg AG. Hirschsprung’s disease – a pathologist’s view. Perspect Pediatr Pathol. 1975;2:207–39.

    CAS  PubMed  Google Scholar 

  28. Vizi ES, et al. Characteristics of cholinergic neuroeffector transmission of ganglionic and aganglionic colon in Hirschsprung’s disease. Gut. 1990;31(9):1046–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boston VE, Cywes S, Davies MR. Serum and erythrocyte acetylcholinesterase activity in Hirschsprung’s disease. J Pediatr Surg. 1978;13(4):407–10.

    Article  CAS  PubMed  Google Scholar 

  30. Sato A, et al. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg. 1978;13(4):399–435.

    Article  CAS  PubMed  Google Scholar 

  31. Nirasawa Y, et al. Hirschsprung’s disease: catecholamine content, alpha-adrenoceptors, and the effect of electrical stimulation in aganglionic colon. J Pediatr Surg. 1986;21(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  32. Hiramoto Y, Kiesewetter WB. The response of colonic muscle to drugs: an in vitro study of Hirschsprung’s disease. J Pediatr Surg. 1974;9(1):13–20.

    Article  CAS  PubMed  Google Scholar 

  33. Kusafuka T, Puri P. Altered mRNA expression of the neuronal nitric oxide synthase gene in Hirschsprung’s disease. J Pediatr Surg. 1997;32(7):1054–8.

    Article  CAS  PubMed  Google Scholar 

  34. Bult H, et al. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature. 1990;345(6273):346–7.

    Article  CAS  PubMed  Google Scholar 

  35. Nemeth L, Rolle U, Puri P. Altered cytoskeleton in smooth muscle of aganglionic bowel. Arch Pathol Lab Med. 2002;126(6):692–6.

    PubMed  Google Scholar 

  36. Hope BT, et al. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991;88(7):2811–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi H, O’Briain DS, Puri P. Lack of expression of NADPH-diaphorase and neural cell adhesion molecule (NCAM) in colonic muscle of patients with Hirschsprung’s disease. J Pediatr Surg. 1994;29(2):301–4.

    Article  CAS  PubMed  Google Scholar 

  38. Bealer JF, et al. Effect of nitric oxide on the colonic smooth muscle of patients with Hirschsprung’s disease. J Pediatr Surg. 1994;29(8):1025–9.

    Article  CAS  PubMed  Google Scholar 

  39. Larsson LT, et al. Lack of neuronal nitric oxide synthase in nerve fibers of aganglionic intestine: a clue to Hirschsprung’s disease. J Pediatr Gastroenterol Nutr. 1995;20(1):49–53.

    Article  CAS  PubMed  Google Scholar 

  40. Rolle U, Nemeth L, Puri P. Nitrergic innervation of the normal gut and in motility disorders of childhood. J Pediatr Surg. 2002;37(4):551–67.

    Article  PubMed  Google Scholar 

  41. Vanderwinden JM, et al. Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology. 1996;111(4):901–10.

    Article  CAS  PubMed  Google Scholar 

  42. Yamataka A, et al. A lack of intestinal pacemaker (c-kit) in aganglionic bowel of patients with Hirschsprung’s disease. J Pediatr Surg. 1995;30(3):441–4.

    Article  CAS  PubMed  Google Scholar 

  43. Yamataka A, et al. Intestinal pacemaker C-KIT+ cells and synapses in allied Hirschsprung’s disorders. J Pediatr Surg. 1997;32(7):1069–74.

    Article  CAS  PubMed  Google Scholar 

  44. Horisawa M, Watanabe Y, Torihashi S. Distribution of c-Kit immunopositive cells in normal human colon and in Hirschsprung’s disease. J Pediatr Surg. 1998;33(8):1209–14.

    Article  CAS  PubMed  Google Scholar 

  45. Chen ZH, et al. Characterization of interstitial Cajal progenitors cells and their changes in Hirschsprung’s disease. PLoS One. 2014;9(1):e86100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rolle U, et al. Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch Pathol Lab Med. 2002;126(8):928–33.

    PubMed  Google Scholar 

  47. Gfroerer S, Rolle U. Interstitial cells of Cajal in the normal human gut and in Hirschsprung disease. Pediatr Surg Int. 2013;29(9):889–97.

    Article  PubMed  Google Scholar 

  48. Nemeth L, Maddur S, Puri P. Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung’s disease bowel. J Pediatr Surg. 2000;35(6):823–8.

    Article  CAS  PubMed  Google Scholar 

  49. Coyle D, et al. Expression of connexin 26 and connexin 43 is reduced in Hirschsprung’s disease. J Surg Res. 2016;206(1):242–51.

    Article  CAS  PubMed  Google Scholar 

  50. Gomez-Pinilla P, et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol. 2009;296(6):G1370–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Coyle D, et al. Use of anoctamin 1 (ANO1) to evaluate interstitial cells of Cajal in Hirschsprung’s disease. Pediatr Surg Int. 2016;32(2):125–33.

    Article  PubMed  Google Scholar 

  52. O’Donnell AM, Coyle D, Puri P. Deficiency of platelet-derived growth factor receptor-alpha-positive cells in Hirschsprung’s disease colon. World J Gastroenterol. 2016;22(12):3335–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Soeda J, O’Briain DS, Puri P. Mucosal neuroendocrine cell abnormalities in the colon of patients with Hirschsprung’s disease. J Pediatr Surg. 1992;27(7):823–7.

    Article  CAS  PubMed  Google Scholar 

  54. Covault J, Sanes JR. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J Cell Biol. 1986;102(3):716–30.

    Article  CAS  PubMed  Google Scholar 

  55. Romanska HM, et al. Increased expression of muscular neural cell adhesion molecule in congenital aganglionosis. Gastroenterology. 1993;105(4):1104–9.

    Article  CAS  PubMed  Google Scholar 

  56. Tennyson VM, et al. Distribution of hyaluronic acid and chondroitin sulfate proteoglycans in the presumptive aganglionic terminal bowel of ls/ls fetal mice: an ultrastructural analysis. J Comp Neurol. 1990;291(3):345–62.

    Article  CAS  PubMed  Google Scholar 

  57. Parikh DH, et al. Abnormalities in the distribution of laminin and collagen type IV in Hirschsprung’s disease. Gastroenterology. 1992;102(4 Pt 1):1236–41.

    Article  CAS  PubMed  Google Scholar 

  58. Parikh DH, et al. Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung’s disease. J Pediatr Surg. 1992;27(8):991–5; discussion 995–6

    Article  CAS  PubMed  Google Scholar 

  59. Parikh DH, et al. The extracellular matrix components, tenascin and fibronectin, in Hirschsprung’s disease: an immunohistochemical study. J Pediatr Surg. 1994;29(10):1302–6.

    Article  CAS  PubMed  Google Scholar 

  60. Soret R, et al. A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J Clin Invest. 2015;125(12):4483–96.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rolig AS, et al. The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. 2017;15(2):e2000689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Neuvonen MI, et al. Intestinal microbiota in Hirschsprung disease. J Pediatr Gastroenterol Nutr. 2018;67(5):594–600.

    Article  PubMed  Google Scholar 

  63. El-Sawaf M, et al. Probiotic prophylaxis after pullthrough for Hirschsprung disease to reduce incidence of enterocolitis: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. J Pediatr Surg. 2013;48(1):111–7.

    Article  PubMed  Google Scholar 

  64. Wang X, et al. Probiotics prevent Hirschsprung’s disease-associated enterocolitis: a prospective multicenter randomized controlled trial. Int J Colorectal Dis. 2015;30(1):105–10.

    Article  PubMed  Google Scholar 

  65. Nakamura H, Lim T, Puri P. Probiotics for the prevention of Hirschsprung-associated enterocolitis: a systematic review and meta-analysis. Pediatr Surg Int. 2018;34(2):189–93.

    Article  CAS  PubMed  Google Scholar 

  66. Menezes M, Corbally M, Puri P. Long-term results of bowel function after treatment for Hirschsprung’s disease: a 29-year review. Pediatr Surg Int. 2006;22(12):987–90.

    Article  PubMed  Google Scholar 

  67. Menezes M, et al. Long-term clinical outcome in patients with total colonic aganglionosis: a 31-year review. J Pediatr Surg. 2008;43(9):1696–9.

    Article  PubMed  Google Scholar 

  68. Mc Laughlin D, Friedmacher F, Puri P. Total colonic aganglionosis: a systematic review and meta-analysis of long-term clinical outcome. Pediatr Surg Int. 2012;28(8):773–9.

    Article  Google Scholar 

  69. Puri P, Rolle U. Variant Hirschsprung’s disease. Semin Pediatr Surg. 2004;13(4):293–9.

    Article  PubMed  Google Scholar 

  70. Puri P, et al. Neuronal colonic dysplasia: an unusual association of Hirschsprung’s disease. J Pediatr Surg. 1977;12(5):681–5.

    Article  CAS  PubMed  Google Scholar 

  71. Fadda B, et al. Neuronal intestinal dysplasia. Critical 10-years’ analysis of clinical and biopsy diagnosis. Z Kinderchir. 1983;38(5):305–11.

    CAS  PubMed  Google Scholar 

  72. Scharli AF. Intestinal neuronal dysplasia. Cir Pediatr. 1992;5(2):64–5.

    CAS  PubMed  Google Scholar 

  73. Kobayashi H, et al. Intestinal neuronal dysplasia is a possible cause of persistent bowel symptoms after pull-through operation for Hirschsprung’s disease. J Pediatr Surg. 1995;30(2):253–7; discussion 257–9

    Article  CAS  PubMed  Google Scholar 

  74. Schmittenbecher PP, et al. Hirschsprung’s disease and intestinal neuronal dysplasia – a frequent association with implications for the postoperative course. Pediatr Surg Int. 1999;15(8):553–8.

    Article  CAS  PubMed  Google Scholar 

  75. Banani SA, Forootan HR, Kumar PV. Intestinal neuronal dysplasia as a cause of surgical failure in Hirschsprung’s disease: a new modality for surgical management. J Pediatr Surg. 1996;31(4):572–4.

    Article  CAS  PubMed  Google Scholar 

  76. Sandgren K, Larsson LT, Ekblad E. Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice: an explanation for persisting dysmotility after operation for Hirschsprung’s disease? Dig Dis Sci. 2002;47(5):1049–64.

    Article  CAS  PubMed  Google Scholar 

  77. Swenson O, Rheinlander H, Diamond I. Hirschsprung’s disease: a new concept of the etiology. N Engl J Med. 1949;241:551–6.

    Article  CAS  PubMed  Google Scholar 

  78. Swenson O, Bill A. Resection of the rectum and rectosigmoid with preservation of the sphincter for benign spastic lesions producing megacolon. Surgery. 1948;24:212–20.

    CAS  PubMed  Google Scholar 

  79. Kubota M, Ito Y, Ikeda K. Membrane properties and innervation of smooth muscle cells in Hirschsprung’s disease. Am J Physiol. 1983;244(4):G406–15.

    CAS  PubMed  Google Scholar 

  80. Kubota M, et al. Regional differences in the pattern of neurogenic responses in the aganglionic colon from congenitally aganglionic rats. J Pediatr Surg. 1989;24(9):911–9.

    Article  CAS  PubMed  Google Scholar 

  81. Kubota M, et al. Electrophysiological properties of the aganglionic segment in Hirschsprung’s disease. Surgery. 2002;131(1 Suppl):S288–93.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Donnell, A.M., Montedonico, S., Puri, P. (2019). Pathophysiology of Hirschsprung’s Disease. In: Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-15647-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15647-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15646-6

  • Online ISBN: 978-3-030-15647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics