Skip to main content

Animal Models of Aganglionosis

  • Chapter
  • First Online:
Hirschsprung's Disease and Allied Disorders
  • 948 Accesses

Abstract

Animal models of aganglionosis have contributed greatly to our understanding of the genetic basis of Hirschsprung’s disease (HSCR) and its complexity. Knockout mouse models are the most commonly used animal models, but also other animals such as rats, rabbits or Zebrafish have been successfully used for studies of aganglionosis. Mainly four main types of animal models are used for investigation: natural occurring models, transgenic animals, teratogen-induced models, and surgically created models. Natural occurring models need no or little interference prior to the study. Transgenic animals not only mimic the natural condition but also help to identify specific genes involved in the regulation of the disease. Teratogen-induced models have the drawback of exposure to a generalized noxa, which could lead to widespread detriments rather than simply targeting a specific organ system. Surgical created models can closely simulate manlike conditions and surgical procedures. Animal models of aganglionosis, especially since advances in knockout and transgenic technology, have been essential in the discovery of genes, molecules, and pathways related to HSCR and are also crucial for stem cell transplantation studies, a promising approach to drug treatment for aganglionosis in the future. In further time course, animal models of aganglionosis will continue to play a key role in the anatomic, physiologic, and pharmacologic understanding of HSCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mortell A, Montedonico S, Puri P. Animal models in pediatric surgery. Pediatr Surg Int. 2006;22(2):111–28. https://doi.org/10.1007/s00383-005-1593-4.

    Article  CAS  PubMed  Google Scholar 

  2. Liu W, Zhang L, Wu R. Enteric neural stem cells expressing insulin-like growth factor 1: a novel cellular therapy for Hirschsprung’s disease in mouse model. DNA Cell Biol. 2018;37(7):642–8. https://doi.org/10.1089/dna.2017.4060.

    Article  CAS  PubMed  Google Scholar 

  3. Lane PW. Association of megacolon with two recessive spotting genes in the mouse. J Hered. 1966;57(1):29–31.

    Article  CAS  PubMed  Google Scholar 

  4. Dietzmann U. Über das Vorkommen des kongenitalen Megakolons (Hirschsprungsches Megakolon) bei der Katz: Occurrence of the congenital mega-colon (Hirschsprung's mega-colon) in cats (Uber das Vorkommen des kongenitalen Megakolons (Hirschsprungsches Megakolon) bei der Katze). Monatsh Veterinarmed. 1968;23(9):349–52.

    CAS  PubMed  Google Scholar 

  5. Osborne JC, Davis JW, Farley H. Hirschsprung’s disease. A review and report of the entity in a Virginia swine herd. Vet Med Small Anim Clin. 1968;63(5):451–3.

    CAS  PubMed  Google Scholar 

  6. Lane PW, Liu HM. Association of megacolon with a new dominant spotting gene (Dom) in the mouse. J Hered. 1984;75(6):435–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ikadai H, Fujita H, Agematsu Y, et al. Observation of congenital aganglionosis rat (Hirschsprung’s disease rat) and its genetical analysis. Congenit Anom (Kyoto). 1979;19:31–6.

    Google Scholar 

  8. Hultgren BD. Ileocolonic aganglionosis in white progeny of overo spotted horses. J Am Vet Med Assoc. 1982;180(3):289–92.

    CAS  PubMed  Google Scholar 

  9. McCabe L, Griffin LD, Kinzer A, et al. Overo lethal white foal syndrome: equine model of aganglionic megacolon (Hirschsprung disease). Am J Med Genet. 1990;36(3):336–40. https://doi.org/10.1002/ajmg.1320360319.

    Article  CAS  PubMed  Google Scholar 

  10. Kernkamp HCH, Kanning HH. Primary megacolon (Hirschsprung’s disease) in swine. N Am Vet. 1955;63:642–3.

    Google Scholar 

  11. Yang GC, Croaker D, Zhang AL, et al. A dinucleotide mutation in the endothelin-B receptor gene is associated with lethal white foal syndrome (LWFS); a horse variant of Hirschsprung disease. Hum Mol Genet. 1998;7(6):1047–52.

    Article  CAS  PubMed  Google Scholar 

  12. Derrick EH, George-Grambauer BMS. Megacolon in mice. J Pathol. 1957;73(2):569–71. https://doi.org/10.1002/path.1700730228.

    Article  Google Scholar 

  13. Bielschowsky M, Schofield GC. Studies on megacolon in piebald mice. Aust J Exp Biol Med Sci. 1962;40:395–403.

    Article  CAS  PubMed  Google Scholar 

  14. Fujimoto T. Natural history and pathophysiology of enterocolitis in the piebald lethal mouse model of Hirschsprung’s disease. J Pediatr Surg. 1988;23(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  15. Fujimoto T, Reen DJ, Puri P. Inflammatory response in enterocolitis in the piebald lethal mouse model of Hirschsprung’s disease. Pediatr Res. 1988;24(2):152–5. https://doi.org/10.1203/00006450-198808000-00002.

    Article  CAS  PubMed  Google Scholar 

  16. Dembowski C, Hofmann P, Koch T, et al. Phenotype, intestinal morphology, and survival of homozygous and heterozygous endothelin B receptor--deficient (spotting lethal) rats. J Pediatr Surg. 2000;35(3):480–8.

    Article  CAS  PubMed  Google Scholar 

  17. Alzahem AM, Cass DT. Animal models of aganglionosis. In: Holschneider AM, Puri P, editors. Hirschsprung’s disease and allied disorders: with 49 tables. 3rd ed. Berlin, Heidelberg: Springer; 2008. p. 51–62.

    Chapter  Google Scholar 

  18. Wood JD. Electrical activity of the intestine of mice with hereditary megacolon and absence of enteric ganglion cells. Am J Dig Dis. 1973;18(6):477–88.

    Article  CAS  PubMed  Google Scholar 

  19. Cass DT, Zhang AL, Morthorpe J. Aganglionosis in rodents. J Pediatr Surg. 1992;27(3):351.

    Article  CAS  PubMed  Google Scholar 

  20. Robinson R. Genetic studies of the rabbit. Hague: M. Nijhoff; 1958.

    Google Scholar 

  21. Bodeker D, Turck O, Loven E, et al. Pathophysiological and functional aspects of the megacolon-syndrome of homozygous spotted rabbits. Zentralbl Veterinarmed A. 1995;42(9):549–59.

    Article  CAS  PubMed  Google Scholar 

  22. Wleberneit D, Wegner W. Albino rabbits can suffer from megacolon-syndrome when they are homozygous for the English Spot\"\" gene (EnEn)\"\". World Rabbit Sci. 1995;3(1) https://doi.org/10.4995/wrs.1995.236.

  23. Fontanesi L, Vargiolu M, Scotti E, et al. Endothelin receptor B (EDNRB) is not the causative gene of the English spotting locus in the domestic rabbit (Oryctolagus cuniculus). Anim Genet. 2010;41(6):669–70. https://doi.org/10.1111/j.1365-2052.2010.02084.x.

    Article  CAS  PubMed  Google Scholar 

  24. Capecchi MR. Targeted gene replacement. Sci Am. 1994;270(3):52–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmer J, Puri P. Knockout mouse models of Hirschsprung’s disease. Pediatr Surg Int. 2015;31(9):787–94. https://doi.org/10.1007/s00383-015-3747-3.

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi M, Buma Y, Iwamoto T, et al. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene. 1988;3(5):571–8.

    CAS  PubMed  Google Scholar 

  27. Schuchardt A, D’Agati V, Larsson-Blomberg L, et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3. https://doi.org/10.1038/367380a0.

    Article  CAS  PubMed  Google Scholar 

  28. Puri P, Shinkai T. Pathogenesis of Hirschsprung’s disease and its variants: recent progress. Semin Pediatr Surg. 2004;13(1):18–24.

    Article  PubMed  Google Scholar 

  29. Robertson K, Mason I. Expression of ret in the chicken embryo suggests roles in regionalisation of the vagal neural tube and somites and in development of multiple neural crest and placodal lineages. Mech Dev. 1995;53(3):329–44.

    Article  CAS  PubMed  Google Scholar 

  30. Pouliot Y. Phylogenetic analysis of the cadherin superfamily. Bioessays. 1992;14(11):743–8. https://doi.org/10.1002/bies.950141104.

    Article  CAS  PubMed  Google Scholar 

  31. Durbec PL, Larsson-Blomberg LB, Schuchardt A, et al. Common origin and developmental dependence on c-ret of subsets of enteric and sympathetic neuroblasts. Development. 1996;122(1):349–58.

    CAS  PubMed  Google Scholar 

  32. Taraviras S, Marcos-Gutierrez CV, Durbec P, et al. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development. 1999;126(12):2785–97.

    CAS  PubMed  Google Scholar 

  33. Martucciello G, Bicocchi MP, Dodero P, et al. Total colonic aganglionosis associated with interstitial deletion of the long arm of chromosome 10. Pediatr Surg Int. 1992;7(4) https://doi.org/10.1007/BF00183991.

  34. Angrist M, Kauffman E, Slaugenhaupt SA, et al. A gene for Hirschsprung disease (megacolon) in the pericentromeric region of human chromosome 10. Nat Genet. 1993;4(4):351–6. https://doi.org/10.1038/ng0893-351.

    Article  CAS  PubMed  Google Scholar 

  35. Lyonnet S, Bolino A, Pelet A, et al. A gene for Hirschsprung disease maps to the proximal long arm of chromosome 10. Nat Genet. 1993;4(4):346–50. https://doi.org/10.1038/ng0893-346.

    Article  CAS  PubMed  Google Scholar 

  36. Romeo G, Ronchetto P, Luo Y, et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature. 1994;367(6461):377–8. https://doi.org/10.1038/367377a0.

    Article  CAS  PubMed  Google Scholar 

  37. Lo L, Anderson DJ. Postmigratory neural crest cells expressing c-RET display restricted developmental and proliferative capacities. Neuron. 1995;15(3):527–39.

    Article  CAS  PubMed  Google Scholar 

  38. Edery P, Lyonnet S, Mulligan LM, et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature. 1994;367(6461):378–80. https://doi.org/10.1038/367378a0.

    Article  CAS  PubMed  Google Scholar 

  39. Kusafuka T, Puri P. Altered RET gene mRNA expression in Hirschsprung’s disease. J Pediatr Surg. 1997;32(4):600–4.

    Article  CAS  PubMed  Google Scholar 

  40. Martucciello G, Ceccherini I, Lerone M, et al. Pathogenesis of Hirschsprung’s disease. J Pediatr Surg. 2000;35(7):1017–25.

    Article  CAS  PubMed  Google Scholar 

  41. Pan Z-W, Li J-C. Advances in molecular genetics of Hirschsprung’s disease. Anat Rec (Hoboken). 2012;295(10):1628–38. https://doi.org/10.1002/ar.22538.

    Article  CAS  Google Scholar 

  42. Mehlen P, Bredesen DE. The dependence receptor hypothesis. Apoptosis. 2004;9(1):37–49. https://doi.org/10.1023/B:APPT.0000012120.66221.b2.

    Article  CAS  PubMed  Google Scholar 

  43. Bordeaux MC, Forcet C, Granger L, et al. The RET proto-oncogene induces apoptosis: a novel mechanism for Hirschsprung disease. EMBO J. 2000;19(15):4056–63. https://doi.org/10.1093/emboj/19.15.4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uesaka T, Nagashimada M, Yonemura S, et al. Diminished Ret expression compromises neuronal survival in the colon and causes intestinal aganglionosis in mice. J Clin Invest. 2008;118(5):1890–8. https://doi.org/10.1172/JCI34425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Angrist M, Bolk S, Halushka M, et al. Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet. 1996;14(3):341–4. https://doi.org/10.1038/ng1196-341.

    Article  CAS  PubMed  Google Scholar 

  46. Worley DS, Pisano JM, Choi ED, et al. Developmental regulation of GDNF response and receptor expression in the enteric nervous system. Development. 2000;127(20):4383–93.

    CAS  PubMed  Google Scholar 

  47. Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet. 2001;38(11):729–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Young HM, Hearn CJ, Farlie PG, et al. GDNF is a chemoattractant for enteric neural cells. Dev Biol. 2001;229(2):503–16. https://doi.org/10.1006/dbio.2000.0100.

    Article  CAS  PubMed  Google Scholar 

  49. Sanchez MP, Silos-Santiago I, Frisen J, et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382(6586):70–3. https://doi.org/10.1038/382070a0.

    Article  CAS  PubMed  Google Scholar 

  50. Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382(6586):73–6. https://doi.org/10.1038/382073a0.

    Article  CAS  PubMed  Google Scholar 

  51. Moore MW, Klein RD, Farinas I, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382(6586):76–9. https://doi.org/10.1038/382076a0.

    Article  CAS  PubMed  Google Scholar 

  52. Cacalano G, Farinas I, Wang LC, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21(1):53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Enomoto H, Araki T, Jackman A, et al. GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  54. Durbec P, Marcos-Gutierrez CV, Kilkenny C, et al. GDNF signalling through the Ret receptor tyrosine kinase. Nature. 1996;381(6585):789–93. https://doi.org/10.1038/381789a0.

    Article  CAS  PubMed  Google Scholar 

  55. Shen L, Pichel JG, Mayeli T, et al. Gdnf haploinsufficiency causes Hirschsprung-like intestinal obstruction and early-onset lethality in mice. Am J Hum Genet. 2002;70(2):435–47. https://doi.org/10.1086/338712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gianino S, Grider JR, Cresswell J, et al. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development. 2003;130(10):2187–98.

    Article  CAS  PubMed  Google Scholar 

  57. Ivanchuk SM, Myers SM, Eng C, et al. De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. Hum Mol Genet. 1996;5(12):2023–6.

    Article  CAS  PubMed  Google Scholar 

  58. Martucciello G, Thompson H, Mazzola C, et al. GDNF deficit in Hirschsprung’s disease. J Pediatr Surg. 1998;33(1):99–102.

    Article  CAS  PubMed  Google Scholar 

  59. Borrego S, Fernandez RM, Dziema H, et al. Investigation of germline GFRA4 mutations and evaluation of the involvement of GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease. J Med Genet. 2003;40(3):e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gariepy CE. Intestinal motility disorders and development of the enteric nervous system. Pediatr Res. 2001;49(5):605–13. https://doi.org/10.1203/00006450-200105000-00001.

    Article  CAS  PubMed  Google Scholar 

  61. Heuckeroth RO, Enomoto H, Grider JR, et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron. 1999;22(2):253–63.

    Article  CAS  PubMed  Google Scholar 

  62. Rossi J, Luukko K, Poteryaev D, et al. Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron. 1999;22(2):243–52.

    Article  CAS  PubMed  Google Scholar 

  63. Heuckeroth RO, Lampe PA, Johnson EM, et al. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol. 1998;200(1):116–29. https://doi.org/10.1006/dbio.1998.8955.

    Article  CAS  PubMed  Google Scholar 

  64. Doray B, Salomon R, Amiel J, et al. Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet. 1998;7(9):1449–52.

    Article  CAS  PubMed  Google Scholar 

  65. Hofstra RM, Osinga J, Tan-Sindhunata G, et al. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome). Nat Genet. 1996;12(4):445–7. https://doi.org/10.1038/ng0496-445.

    Article  CAS  PubMed  Google Scholar 

  66. Salomon R, Attie T, Pelet A, et al. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet. 1996;14(3):345–7. https://doi.org/10.1038/ng1196-345.

    Article  CAS  PubMed  Google Scholar 

  67. Parisi MA, Kapur RP. Genetics of Hirschsprung disease. Curr Opin Pediatr. 2000;12(6):610–7.

    Article  CAS  PubMed  Google Scholar 

  68. Eketjall S, Ibanez CF. Functional characterization of mutations in the GDNF gene of patients with Hirschsprung disease. Hum Mol Genet. 2002;11(3):325–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sakurai T, Yanagisawa M, Masaki T. Molecular characterization of endothelin receptors. Trends Pharmacol Sci. 1992;13(3):103–8.

    CAS  PubMed  Google Scholar 

  70. Yanagisawa H, Yanagisawa M, Kapur RP, et al. Dual genetic pathways of endothelin-mediated intercellular signaling revealed by targeted disruption of endothelin converting enzyme-1 gene. Development. 1998;125(5):825–36.

    CAS  PubMed  Google Scholar 

  71. Hofstra RM, Valdenaire O, Arch E, et al. A loss-of-function mutation in the endothelin-converting enzyme 1 (ECE-1) associated with Hirschsprung disease, cardiac defects, and autonomic dysfunction. Am J Hum Genet. 1999;64(1):304–8. https://doi.org/10.1086/302184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hosoda K, Hammer RE, Richardson JA, et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994;79(7):1267–76.

    Article  CAS  PubMed  Google Scholar 

  73. Baynash AG, Hosoda K, Giaid A, et al. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994;79(7):1277–85.

    Article  CAS  PubMed  Google Scholar 

  74. Rice J, Doggett B, Sweetser DA, et al. Transgenic rescue of aganglionosis and piebaldism in lethal spotted mice. Dev Dyn. 2000;217(1):120–32. https://doi.org/10.1002/(SICI)1097-0177(200001)217:1<120:AID-DVDY11>3.0.CO;2-U.

    Article  CAS  PubMed  Google Scholar 

  75. Leibl MA, Ota T, Woodward MN, et al. Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut. 1999;44(2):246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. von Boyen GBT, Krammer H-J, Suss A, et al. Abnormalities of the enteric nervous system in heterozygous endothelin B receptor deficient (spotting lethal) rats resembling intestinal neuronal dysplasia. Gut. 2002;51(3):414–9.

    Article  Google Scholar 

  77. Roberts RR, Bornstein JC, Bergner AJ, et al. Disturbances of colonic motility in mouse models of Hirschsprung’s disease. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G996–G1008. https://doi.org/10.1152/ajpgi.00558.2007.

    Article  CAS  PubMed  Google Scholar 

  78. Cheng Z, Dhall D, Zhao L, et al. Murine model of Hirschsprung-associated enterocolitis. I: phenotypic characterization with development of a histopathologic grading system. J Pediatr Surg. 2010;45(3):475–82. https://doi.org/10.1016/j.jpedsurg.2009.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng Z, Wang X, Dhall D, et al. Splenic lymphopenia in the endothelin receptor B-null mouse: implications for Hirschsprung associated enterocolitis. Pediatr Surg Int. 2011;27(2):145–50. https://doi.org/10.1007/s00383-010-2787-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zaitoun I, Erickson CS, Barlow AJ, et al. Altered neuronal density and neurotransmitter expression in the ganglionated region of Ednrb null mice: implications for Hirschsprung’s disease. Neurogastroenterol Motil. 2013;25(3):44. https://doi.org/10.1111/nmo.12083.

    Article  CAS  Google Scholar 

  81. Puffenberger EG, Hosoda K, Washington SS, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell. 1994;79(7):1257–66.

    Article  CAS  PubMed  Google Scholar 

  82. Attie T, Till M, Pelet A, et al. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet. 1995;4(12):2407–9.

    Article  CAS  PubMed  Google Scholar 

  83. Amiel J, Attie T, Jan D, et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. Hum Mol Genet. 1996;5(3):355–7.

    Article  CAS  PubMed  Google Scholar 

  84. Auricchio A, Casari G, Staiano A, et al. Endothelin-B receptor mutations in patients with isolated Hirschsprung disease from a non-inbred population. Hum Mol Genet. 1996;5(3):351–4.

    Article  CAS  PubMed  Google Scholar 

  85. Kusafuka T, Wang Y, Puri P. Novel mutations of the endothelin-B receptor gene in isolated patients with Hirschsprung’s disease. Hum Mol Genet. 1996;5(3):347–9.

    Article  CAS  PubMed  Google Scholar 

  86. Edery P, Attie T, Amiel J, et al. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet. 1996;12(4):442–4. https://doi.org/10.1038/ng0496-442.

    Article  CAS  PubMed  Google Scholar 

  87. Kusafuka T, Wang Y, Puri P. Mutation analysis of the RET, the endothelin-B receptor, and the endothelin-3 genes in sporadic cases of Hirschsprung’s disease. J Pediatr Surg. 1997;32(3):501–4.

    Article  CAS  PubMed  Google Scholar 

  88. Lelievre V, Favrais G, Abad C, et al. Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschsprung’s disease. Peptides. 2007;28(9):1688–99. https://doi.org/10.1016/j.peptides.2007.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fattahi F, Steinbeck JA, Kriks S, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531(7592):105–9. https://doi.org/10.1038/nature16951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhou Y, Besner G. Transplantation of amniotic fluid-derived neural stem cells as a potential novel therapy for Hirschsprung’s disease. J Pediatr Surg. 2016;51(1):87–91. https://doi.org/10.1016/j.jpedsurg.2015.10.016.

    Article  PubMed  Google Scholar 

  91. Pusch C, Hustert E, Pfeifer D, et al. The SOX10/Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum Genet. 1998;103(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  92. Kuhlbrodt K, Herbarth B, Sock E, et al. Sox10, a novel transcriptional modulator in glial cells. J Neurosci. 1998;18(1):237–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Paratore C, Goerich DE, Suter U, et al. Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 2001;128(20):3949–61.

    CAS  PubMed  Google Scholar 

  94. Kim J, Lo L, Dormand E, et al. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron. 2003;38(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  95. Southard-Smith EM, Kos L, Pavan WJ. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet. 1998;18(1):60–4. https://doi.org/10.1038/ng0198-60.

    Article  CAS  PubMed  Google Scholar 

  96. Herbarth B, Pingault V, Bondurand N, et al. Mutation of the Sry-related Sox10 gene in Dominant megacolon, a mouse model for human Hirschsprung disease. Proc Natl Acad Sci U S A. 1998;95(9):5161–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: old and new players. Dev Biol. 2016;417(2):139–57. https://doi.org/10.1016/j.ydbio.2016.06.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Musser MA, Correa H, Southard-Smith EM. Enteric neuron imbalance and proximal dysmotility in ganglionated intestine of the Sox10(Dom/+) Hirschsprung mouse model. Cell Mol Gastroenterol Hepatol. 2015;1(1):87–101. https://doi.org/10.1016/j.jcmgh.2014.08.002.

    Article  PubMed  Google Scholar 

  99. Kapur RP. Hirschsprung disease and other enteric dysganglionoses. Crit Rev Clin Lab Sci. 1999;36(3):225–73. https://doi.org/10.1080/10408369991239204.

    Article  CAS  PubMed  Google Scholar 

  100. Corpening JC, Deal KK, Cantrell VA, et al. Isolation and live imaging of enteric progenitors based on Sox10-Histone2BVenus transgene expression. Genesis. 2011;49(7):599–618. https://doi.org/10.1002/dvg.20748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lang D, Chen F, Milewski R, et al. Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest. 2000;106(8):963–71. https://doi.org/10.1172/JCI10828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kuhlbrodt K, Schmidt C, Sock E, et al. Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J Biol Chem. 1998;273(36):23033–8.

    Article  CAS  PubMed  Google Scholar 

  103. Watanabe Y, Broders-Bondon F, Baral V, et al. Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol. 2013;379(1):92–106. https://doi.org/10.1016/j.ydbio.2013.04.013.

    Article  CAS  PubMed  Google Scholar 

  104. Maka M, Stolt CC, Wegner M. Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Dev Biol. 2005;277(1):155–69. https://doi.org/10.1016/j.ydbio.2004.09.014.

    Article  CAS  PubMed  Google Scholar 

  105. Pattyn A, Morin X, Cremer H, et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development. 1997;124(20):4065–75.

    CAS  PubMed  Google Scholar 

  106. Pattyn A, Morin X, Cremer H, et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature. 1999;399(6734):366–70. https://doi.org/10.1038/20700.

    Article  CAS  PubMed  Google Scholar 

  107. Perri P, Bachetti T, Longo L, et al. PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene. 2005;24(18):3050–3. https://doi.org/10.1038/sj.onc.1208532.

    Article  CAS  PubMed  Google Scholar 

  108. Trochet D, Bourdeaut F, Janoueix-Lerosey I, et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet. 2004;74(4):761–4. https://doi.org/10.1086/383253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bachetti T, Matera I, Borghini S, et al. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Hum Mol Genet. 2005;14(13):1815–24. https://doi.org/10.1093/hmg/ddi188.

    Article  CAS  PubMed  Google Scholar 

  110. Amiel J, Laudier B, Attié-Bitach T, et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet. 2003;33(4):459–61. https://doi.org/10.1038/ng1130.

    Article  CAS  PubMed  Google Scholar 

  111. Garcia-Barcelo M, Sham MH, Lui VCH, et al. Association study of PHOX2B as a candidate gene for Hirschsprung’s disease. Gut. 2003;52(4):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fitze G, Konig IR, Paditz E, et al. Compound effect of PHOX2B and RET gene variants in congenital central hypoventilation syndrome combined with Hirschsprung disease. Am J Med Genet A. 2008;146A(11):1486–9. https://doi.org/10.1002/ajmg.a.32300.

    Article  CAS  PubMed  Google Scholar 

  113. Lai D, Schroer B. Haddad syndrome: a case of an infant with central congenital hypoventilation syndrome and Hirschsprung disease. J Child Neurol. 2008;23(3):341–3. https://doi.org/10.1177/0883073807309242.

    Article  PubMed  Google Scholar 

  114. Amiel J, Sproat-Emison E, Garcia-Barcelo M, et al. Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet. 2008;45(1):1–14. https://doi.org/10.1136/jmg.2007.053959.

    Article  CAS  PubMed  Google Scholar 

  115. Goulding MD, Chalepakis G, Deutsch U, et al. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J. 1991;10(5):1135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Auerbach R. Analysis of the developmental effects of a lethal mutation in the house mouse. J Exp Zool. 1954;127(2):305–29. https://doi.org/10.1002/jez.1401270206.

    Article  Google Scholar 

  117. Epstein DJ, Vekemans M, Gros P. Splotch (Sp2H), a mutation affecting development of the mouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell. 1991;67(4):767–74.

    Article  CAS  PubMed  Google Scholar 

  118. Epstein DJ, Vogan KJ, Trasler DG, et al. A mutation within intron 3 of the Pax-3 gene produces aberrantly spliced mRNA transcripts in the splotch (Sp) mouse mutant. Proc Natl Acad Sci U S A. 1993;90(2):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tassabehji M, Read AP, Newton VE, et al. Waardenburg’s syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature. 1992;355(6361):635–6. https://doi.org/10.1038/355635a0.

    Article  CAS  PubMed  Google Scholar 

  120. Rings E, van den Berg M, Stokkers P. Expression of homeobox genes in the gastrointestinal tract. J Pediatr Gastroenterol Nutr. 1998;27(1):122–3.

    Article  CAS  PubMed  Google Scholar 

  121. Pitera JE, Smith VV, Thorogood P, et al. Coordinated expression of 3′ hox genes during murine embryonal gut development: an enteric Hox code. Gastroenterology. 1999;117(6):1339–51.

    Article  CAS  PubMed  Google Scholar 

  122. Fu M, VCH L, Sham MH, et al. Sonic hedgehog regulates the proliferation, differentiation, and migration of enteric neural crest cells in gut. J Cell Biol. 2004;166(5):673–84. https://doi.org/10.1083/jcb.200401077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Warot X, Fromental-Ramain C, Fraulob V, et al. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development. 1997;124(23):4781–91.

    CAS  PubMed  Google Scholar 

  124. Mechine-Neuville A, Lefebvre O, Bellocq J-P, et al. Increased expression of HOXA9 gene in Hirschsprung disease (Augmentation de l’expression du gene HOXA9 dans la maladie de Hirschsprung). Gastroenterol Clin Biol. 2002;26(12):1110–7.

    PubMed  Google Scholar 

  125. Shirasawa S, Yunker AM, Roth KA, et al. Enx (Hox11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med. 1997;3(6):646–50.

    Article  CAS  PubMed  Google Scholar 

  126. Hatano M, Aoki T, Dezawa M, et al. A novel pathogenesis of megacolon in Ncx/Hox11L.1 deficient mice. J Clin Invest. 1997;100(4):795–801. https://doi.org/10.1172/JCI119593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lui VCH, Cheng WWC, Leon TYY, et al. Perturbation of hoxb5 signaling in vagal neural crests down-regulates ret leading to intestinal hypoganglionosis in mice. Gastroenterology. 2008;134(4):1104–15. https://doi.org/10.1053/j.gastro.2008.01.028.

    Article  CAS  PubMed  Google Scholar 

  128. Tennyson VM, Gershon MD, Sherman DL, et al. Structural abnormalities associated with congenital megacolon in transgenic mice that overexpress the Hoxa-4 gene. Dev Dyn. 1993;198(1):28–53. https://doi.org/10.1002/aja.1001980105.

    Article  CAS  PubMed  Google Scholar 

  129. Tennyson VM, Gershon MD, Wade PR, et al. Fetal development of the enteric nervous system of transgenic mice that overexpress the Hoxa-4 gene. Dev Dyn. 1998;211(3):269–91. https://doi.org/10.1002/(SICI)1097-0177(199803)211:3<269:AID-AJA8>3.0.CO;2-F.

    Article  CAS  PubMed  Google Scholar 

  130. Doodnath R, Wride M, Puri P. The spatio-temporal patterning of Hoxa9 and Hoxa13 in the developing zebrafish enteric nervous system. Pediatr Surg Int. 2012;28(2):115–21. https://doi.org/10.1007/s00383-011-2992-3.

    Article  CAS  PubMed  Google Scholar 

  131. Yokouchi Y, Sakiyama J, Kuroiwa A. Coordinated expression of Abd-B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo. Dev Biol. 1995;169(1):76–89.

    Article  CAS  PubMed  Google Scholar 

  132. Roberts DJ, Johnson RL, Burke AC, et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development. 1995;121(10):3163–74.

    CAS  PubMed  Google Scholar 

  133. de Santa Barbara P, Roberts DJ. Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13. Development. 2002;129(3):551–61.

    PubMed  Google Scholar 

  134. Garcia-Barcelo MM, Miao X, Lui VCH, et al. Correlation between genetic variations in Hox clusters and Hirschsprung’s disease. Ann Hum Genet. 2007;71(Pt 4):526–36. https://doi.org/10.1111/j.1469-1809.2007.00347.x.

    Article  CAS  PubMed  Google Scholar 

  135. Yang JT, Liu CZ, Villavicencio EH, et al. Expression of human GLI in mice results in failure to thrive, early death, and patchy Hirschsprung-like gastrointestinal dilatation. Mol Med. 1997;3(12):826–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu JA-J, Lai FP-L, Gui H-S, et al. Identification of GLI mutations in patients with Hirschsprung disease that disrupt enteric nervous system development in mice. Gastroenterology. 2015;149(7):1837–1848.e5. https://doi.org/10.1053/j.gastro.2015.07.060.

    Article  CAS  PubMed  Google Scholar 

  137. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127(12):2763–72.

    CAS  PubMed  Google Scholar 

  138. Pozniak CD, Langseth AJ, Dijkgraaf GJP, et al. Sox10 directs neural stem cells toward the oligodendrocyte lineage by decreasing Suppressor of Fused expression. Proc Natl Acad Sci U S A. 2010;107(50):21795–800. https://doi.org/10.1073/pnas.1016485107.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dastot-Le Moal F, Wilson M, Mowat D, et al. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum Mutat. 2007;28(4):313–21. https://doi.org/10.1002/humu.20452.

    Article  CAS  PubMed  Google Scholar 

  140. Takagi T, Nishizaki Y, Matsui F, et al. De novo inbred heterozygous Zeb2/Sip1 mutant mice uniquely generated by germ-line conditional knockout exhibit craniofacial, callosal and behavioral defects associated with Mowat-Wilson syndrome. Hum Mol Genet. 2015;24(22):6390–402. https://doi.org/10.1093/hmg/ddv350.

    Article  CAS  PubMed  Google Scholar 

  141. de Putte V, Tom FA, Nelles L, et al. Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Hum Mol Genet. 2007;16(12):1423–36. https://doi.org/10.1093/hmg/ddm093.

    Article  CAS  PubMed  Google Scholar 

  142. Wakamatsu N, Yamada Y, Yamada K, et al. Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet. 2001;27(4):369–70. https://doi.org/10.1038/86860.

    Article  CAS  PubMed  Google Scholar 

  143. Amiel J, Espinosa-Parrilla Y, Steffann J, et al. Large-scale deletions and SMADIP1 truncating mutations in syndromic Hirschsprung disease with involvement of midline structures. Am J Hum Genet. 2001;69(6):1370–7. https://doi.org/10.1086/324342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Antonellis A, Bennett WR, Menheniott TR, et al. Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg-Shah (WS4) syndrome. Hum Mol Genet. 2006;15(2):259–71. https://doi.org/10.1093/hmg/ddi442.

    Article  CAS  PubMed  Google Scholar 

  145. Bergeron K-F, Cardinal T, Toure AM, et al. Male-biased aganglionic megacolon in the TashT mouse line due to perturbation of silencer elements in a large gene desert of chromosome 10. PLoS Genet. 2015;11(3):e1005093. https://doi.org/10.1371/journal.pgen.1005093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Soret R, Mennetrey M, Bergeron KF, et al. A collagen VI-dependent pathogenic mechanism for Hirschsprung’s disease. J Clin Invest. 2015;125(12):4483–96. https://doi.org/10.1172/JCI83178.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Breau MA, Pietri T, Eder O, et al. Lack of beta1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development. 2006;133(9):1725–34. https://doi.org/10.1242/dev.02346.

    Article  CAS  PubMed  Google Scholar 

  148. Nagy N, Mwizerwa O, Yaniv K, et al. Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol. 2009;330(2):263–72. https://doi.org/10.1016/j.ydbio.2009.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tanyel FC, Muftuoglu SF, Dagdeviren A, et al. Expression of beta-1 integrins in ganglionic and aganglionic segments of patients with Hirschsprung’s disease. Eur J Pediatr Surg. 1997;7(1):16–20. https://doi.org/10.1055/s-2008-1071042.

    Article  CAS  PubMed  Google Scholar 

  150. Selfridge J, Song L, Brownstein DG, et al. Mice with DNA repair gene Ercc1 deficiency in a neural crest lineage are a model for late-onset Hirschsprung disease. DNA Repair (Amst). 2010;9(6):653–60. https://doi.org/10.1016/j.dnarep.2010.02.018.

    Article  CAS  Google Scholar 

  151. Meijers JH, Tibboel D, van der Kamp AW, et al. A model for aganglionosis in the chicken embryo. J Pediatr Surg. 1989;24(6):557–61.

    Article  CAS  PubMed  Google Scholar 

  152. Payette RF, Tennyson VM, Pomeranz HD, et al. Accumulation of components of basal laminae: association with the failure of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice. Dev Biol. 1988;125(2):341–60.

    Article  CAS  PubMed  Google Scholar 

  153. Gershon MD, Chalazonitis A, Rothman TP. From neural crest to bowel: development of the enteric nervous system. J Neurobiol. 1993;24(2):199–214. https://doi.org/10.1002/neu.480240207.

    Article  CAS  PubMed  Google Scholar 

  154. Rothman TP, Le Douarin NM, Fontaine-Perus JC, et al. Developmental potential of neural crest-derived cells migrating from segments of developing quail bowel back-grafted into younger chick host embryos. Development. 1990;109(2):411–23.

    CAS  PubMed  Google Scholar 

  155. Thiery JP, Duband JL, Delouvee A. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol. 1982;93(2):324–43.

    Article  CAS  PubMed  Google Scholar 

  156. Natsikas NB, Sbarounis CN. Adult Hirschsprung’s disease. An experience with the Duhamel-Martin procedure with special reference to obstructed patients. Dis Colon Rectum. 1987;30(3):204–6.

    Article  CAS  PubMed  Google Scholar 

  157. O’Donnell A-M, Puri P. Hypoganglionic colorectum in the chick embryo: a model of human hypoganglionosis. Pediatr Surg Int. 2009;25(10):885–8. https://doi.org/10.1007/s00383-009-2444-5.

    Article  PubMed  Google Scholar 

  158. Zhou CB, Peng CH, Pang WB, et al. Treating congenital megacolon by transplanting GDNF and GFRα-1 double genetically modified rat bone marrow mesenchymal stem cells. Genet Mol Res. 2015;14(3):9441–51. https://doi.org/10.4238/2015.August.14.8.

    Article  CAS  PubMed  Google Scholar 

  159. Cheng LS, Hotta R, Graham HK, et al. Endoscopic delivery of enteric neural stem cells to treat Hirschsprung disease. Neurogastroenterol Motil. 2015;27(10):1509–14. https://doi.org/10.1111/nmo.12635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sato A, Yamamoto M, Imamura K, et al. Pathophysiology of aganglionic colon and anorectum: an experimental study on aganglionosis produced by a new method in the rat. J Pediatr Surg. 1978;13(4):399–435.

    Article  CAS  PubMed  Google Scholar 

  161. Parr EJ, Sharkey KA. Multiple mechanisms contribute to myenteric plexus ablation induced by benzalkonium chloride in the guinea-pig ileum. Cell Tissue Res. 1997;289(2):253–64.

    Article  CAS  PubMed  Google Scholar 

  162. Yoneda A, Shima H, Nemeth L, et al. Selective chemical ablation of the enteric plexus in mice. Pediatr Surg Int. 2002;18(4):234–7. https://doi.org/10.1007/s003830100681.

    Article  PubMed  Google Scholar 

  163. Fujimura T, Shibata S, Shimojima N, et al. Fluorescence visualization of the enteric nervous network in a chemically induced aganglionosis model. PLoS One. 2016;11(3):e0150579. https://doi.org/10.1371/journal.pone.0150579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Khalil HA, Kobayashi M, Rana P, et al. Mouse model of endoscopically ablated enteric nervous system. J Surg Res. 2016;200(1):117–21. https://doi.org/10.1016/j.jss.2015.07.034.

    Article  PubMed  Google Scholar 

  165. Dahl JL, Bloom DD, Epstein ML, et al. Effect of chemical ablation of myenteric neurons on neurotransmitter levels in the rat jejunum. Gastroenterology. 1987;92(2):338–44.

    Article  CAS  PubMed  Google Scholar 

  166. See NA, Epstein ML, Dahl JL, et al. The myenteric plexus regulates cell growth in rat jejunum. J Auton Nerv Syst. 1990;31(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  167. See NA, Epstein ML, Schultz E, et al. Hyperplasia of jejunal smooth muscle in the myenterically denervated rat. Cell Tissue Res. 1988;253(3):609–17.

    Article  CAS  PubMed  Google Scholar 

  168. See NA, Greenwood B, Bass P. Submucosal plexus alone integrates motor activity and epithelial transport in rat jejunum. Am J Physiol. 1990;259(4 Pt 1):8.

    Google Scholar 

  169. Luck MS, Dahl JL, Boyeson MG, et al. Neuroplasticity in the smooth muscle of the myenterically and extrinsically denervated rat jejunum. Cell Tissue Res. 1993;271(2):363–74.

    Article  CAS  PubMed  Google Scholar 

  170. Holle GE. Changes in the structure and regeneration mode of the rat small intestinal mucosa following benzalkonium chloride treatment. Gastroenterology. 1991;101(5):1264–73.

    Article  CAS  PubMed  Google Scholar 

  171. Holle GE, Forth W. Myoelectric activity of small intestine after chemical ablation of myenteric neurons. Am J Physiol. 1990;258(4 Pt 1):26.

    Google Scholar 

  172. Dong YL, Liu W, Gao YM, et al. Neural stem cell transplantation rescues rectum function in the aganglionic rat. Transplant Proc. 2008;40(10):3646–52. https://doi.org/10.1016/j.transproceed.2008.06.107.

    Article  CAS  PubMed  Google Scholar 

  173. Shu X, Meng Q, Jin H, et al. Treatment of aganglionic megacolon mice via neural stem cell transplantation. Mol Neurobiol. 2013;48(3):429–37. https://doi.org/10.1007/s12035-013-8430-x.

    Article  CAS  PubMed  Google Scholar 

  174. Zhang L, Zhao B, Liu W, et al. Cotransplantation of neuroepithelial stem cells with interstitial cells of Cajal improves neuronal differentiation in a rat aganglionic model. J Pediatr Surg. 2017;52(7):1188–95. https://doi.org/10.1016/j.jpedsurg.2017.01.065.

    Article  PubMed  Google Scholar 

  175. Wagner JP, Sullins VF, Dunn JCY. Skin-derived precursors generate enteric-type neurons in aganglionic jejunum. J Pediatr Surg. 2014;49(12):1809–14. https://doi.org/10.1016/j.jpedsurg.2014.09.023.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Wagner JP, Sullins VF, Dunn JCY. A novel in vivo model of permanent intestinal aganglionosis. J Surg Res. 2014;192(1):27–33. https://doi.org/10.1016/j.jss.2014.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Wagner JP, Sullins VF, Khalil HA, et al. A durable model of Hirschsprung’s colon. J Pediatr Surg. 2014;49(12):1804–8. https://doi.org/10.1016/j.jpedsurg.2014.09.024.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Erol G, Yasemin A, Gokcimen A, Ozdemir O. Growth failure, tardive dyskinesia, megacolon development, and hepatic damage in neonatal rats following exposure to trimethobenzamide in utero. J Matern Fetal Neonatal Med. 2011;24(9):1176–80. https://doi.org/10.3109/14767058.2010.536867.

    Article  CAS  Google Scholar 

  179. Sato Y, Heuckeroth RO. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol. 2008;320(1):185–98. https://doi.org/10.1016/j.ydbio.2008.05.524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Fu M, Sato Y, Lyons-Warren A, et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 2010;137(4):631–40. https://doi.org/10.1242/dev.040550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schill EM, Lake JI, Tusheva OA, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409(2):473–88. https://doi.org/10.1016/j.ydbio.2015.09.023.

    Article  CAS  PubMed  Google Scholar 

  182. Lake JI, Tusheva OA, Graham BL, et al. Hirschsprung-like disease is exacerbated by reduced de novo GMP synthesis. J Clin Invest. 2013;123(11):4875–87. https://doi.org/10.1172/JCI69781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lake JI, Avetisyan M, Zimmermann AG, et al. Neural crest requires Impdh2 for development of the enteric nervous system, great vessels, and craniofacial skeleton. Dev Biol. 2016;409(1):152–65. https://doi.org/10.1016/j.ydbio.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  184. Tam PKH, Garcia-Barceló M. Genetic basis of Hirschsprung’s disease. Pediatr Surg Int. 2009;25(7):543–58. https://doi.org/10.1007/s00383-009-2402-2.

    Article  PubMed  Google Scholar 

  185. Newgreen D, Young HM. Enteric nervous system: development and developmental disturbances--part 2. Pediatr Dev Pathol. 2002;5(4):329–49. https://doi.org/10.1007/s10024-002-0002-4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Brendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brendel, J., Puri, P. (2019). Animal Models of Aganglionosis. In: Puri, P. (eds) Hirschsprung's Disease and Allied Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-15647-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15647-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15646-6

  • Online ISBN: 978-3-030-15647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics