Skip to main content

GeCoLan: A Constraint Language for Reasoning About Ecological Networks in the Semantic Web

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2017)

Abstract

Ecological Networks (ENs) describe the structure of existing real ecosystems and help planning their expansion, conservation and improvement. While various mathematical models of ENs have been defined, to our knowledge they focus on simulating ecosystems, but none of them deals with verifying whether any transformation proposals, as those collected in participatory decision-making processes for public policy making, are consistent with land usage restrictions.

As an attempt to fill this gap, we developed a model to represent the specifications for the local planning of ENs in a way that can support both the detection of constraint violations within new proposals of expansion, and the reasoning about improvements of the networks. In line with the GeoSpatial Semantic WEB, our model is based on an OWL ontology for the representation of ENs. Moreover, we define a language, GeCoLan, supporting constraint-based reasoning on semantic data. Even though this paper focuses on EN validation, our language can be employed to enable more complex tasks, such as the generation of proposals for improving ENs.

The present paper describes our ontological specification of ENs, the GeCoLan language for reasoning about specifications, and the tools we developed to support data acquisition and constraint verification on ENs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.cittametropolitana.torino.it/.

  2. 2.

    www.polito.it.

  3. 3.

    www.enea.it.

  4. 4.

    The Priority Expansion Elements are the areas with residual ecological functionality where the priority is intervening to increase the functionality of the primary ecological network and implementing conservation measures.

  5. 5.

    Filter expressions correspond to whole constraints to be evaluated in the FILTER clause of SPARQL; see Sect. 5.1.

  6. 6.

    We write G for short to denote functional property hasGeometry that applies to both ConnectionElements and LandUseElements.

  7. 7.

    In GeoSPARQL, the topological relations such as sfOverlaps are computed on the geometries associated with the individuals in class Feature (lue and ce in our example) through the defaultGeometry property.

  8. 8.

    www.antlr.org/.

  9. 9.

    https://jena.apache.org/.

References

  1. Jongman, R.: Nature conservation planning in Europe: developing ecological networks. Landsc. Urban Plan. 32, 169–183 (1995)

    Article  Google Scholar 

  2. Council of Europe: General guidelines for the development of the Pan-European Ecological Network. Nature and environment 107 (2000)

    Google Scholar 

  3. Bennett, G., Wit, P.: The development and application of ecological networks: a review of proposals, plans and programmes. AIDEnvironment (2001)

    Google Scholar 

  4. Bennett, G., Mulongoy, K.: Review of experience with ecological networks, corridors and buffer zones. Technical Series 23 (2006)

    Google Scholar 

  5. Città Metropolitana di Torino: Misura 323 del PSR 2007–2013 (in Italian) (2014). http://www.cittametropolitana.torino.it/cms/territorio-urbanistica/misura-323/misura-323-sperimentale

  6. Janowicz, K., Scheider, S., Pehle, T., Ha, G.: Geospatial semantics and linked spatiotemporal data - past, present, and future. Semant. Web - Linked Spatiotemporal Data Geo-Ontol. 3, 321–332 (2012)

    Google Scholar 

  7. Fonseca, F., Egenhofer, M., Davis Jr., C.A., Borges, K.: Ontologies and knowledge sharing in urban GIS. Comput. Environ. Urban Syst. 24, 251–272 (2000)

    Article  Google Scholar 

  8. Fonseca, F., Egenhofer, M., Agouris, P., Câmara, G.: Using ontologies for geographic information systems. Trans. GIS 3, 231–257 (2002)

    Article  Google Scholar 

  9. Dechter, R.: Constraint networks. In: Encyclopedia of Artificial Intelligence, 2nd ed. pp. 276–285 (1992)

    Google Scholar 

  10. W3C: Web ontology language (OWL) (2017). https://www.w3.org/OWL/

  11. OCG: GeoSPARQL - a geographic query language for RDF data (2017). http://www.opengeospatial.org/standards/geosparql

  12. Ajit, S., Sleeman, D., Fowler, D.W., Knott, D.: Constraint capture and maintenance in engineering design. Artif. Intell. Eng. Des. Anal. Manuf. 22, 325–343 (2008)

    Article  Google Scholar 

  13. Louwsma, J., Zlatanova, S., van Lammeren, R., van Oosterom, P.: Specifying and implementing constraints in GIS - with examples from a geo-virtual reality system. GeoInformatica 10, 531–550 (2006)

    Article  Google Scholar 

  14. W3C: SPARQL query language for RDF. https://www.w3.org/TR/rdf-sparql-query/

  15. Torta, G., Ardissono, L., Savoca, A., Voghera, A., Riccia, L.L.: Representing ecological network specifications with semantic web techniques. In: Proceedings of 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), Funchal, Madeira, Portugal, pp. 86–97. SCITEPRESS (2017)

    Google Scholar 

  16. W3C: Resource description framework (RDF) (2017). https://www.w3.org/RDF/

  17. Fath, B., Sharler, U., Ulanowicz, R., Hannon, B.: Ecological network analysis: network construction. Trends Ecol. Evol. 208, 49–55 (2007)

    Google Scholar 

  18. Ulanowicz, R.: Quantitative methods for ecological network analysis. Comput. Biol. Chem. 28, 321–339 (2004)

    Article  Google Scholar 

  19. Lurgi, M., Robertson, D.: Automated experimentation in ecological networks. Autom. Exp. 3, 1 (2011)

    Article  Google Scholar 

  20. Gobluski, A., Westlund, E., Vandermeer, J., Pascual, M.: Ecological networks over the edge: hypergraph trait-mediated indirect interaction (TMII) structure. Trends Ecol. Evol. 31, 344–354 (2016)

    Article  Google Scholar 

  21. Pilosof, S., Porter, M., Pascual, M., Kefi, S.: The mulutilayer nature of ecological networks. Nat. Ecol. Evol. 1 (2017). Article No. 101

    Google Scholar 

  22. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and GeoSPARQL. Semant. Web 3, 355–370 (2012)

    Google Scholar 

  23. W3C: Linked data (2018). https://www.w3.org/standards/semanticweb/data

  24. Urban, S.: ALICE: an assertion language for integrity constraint expression. In: Proceedings of Computer Software and Applications Conference, pp. 292–299 (1989)

    Google Scholar 

  25. Bassiliades, N., Gray, P.: CoLan: a functional constraint language and its implementation. Data Knowl. Eng. 14, 203–249 (1995)

    Article  Google Scholar 

  26. Christensen, J.V., Johnsen, M.: Formalizing constraints for geographic information. In: Nilsson, A.G., Gustas, R., Wojtkowski, W., Wojtkowski, W.G., Wrycza, S., Zupančič, J. (eds.) Advances in Information Systems Development, pp. 657–667. Springer, Boston (2006). https://doi.org/10.1007/978-0-387-36402-5_57

    Chapter  Google Scholar 

  27. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a semantic web rule language combining OWL and RuleML. W3C Member submission 21 (2004)

    Google Scholar 

  28. Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: a markup language for semantic web rules. In: Proceedings of the First International Conference on Semantic Web Working, pp. 381–401, CEUR-WS.org (2001)

    Google Scholar 

  29. Boley, H., et al.: FOL RuleML: the first-order logic web language (2004). http://www.ruleml.org/fol

  30. W3C: A Proposal for a SWRL Extension towards First-Order Logic (2005). https://www.w3.org/Submission/SWRL-FOL/

  31. Keßler, C., Raubal, M., Wosniok, C.: Semantic rules for context-aware geographical information retrieval. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 77–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04471-7_7

    Chapter  Google Scholar 

  32. Gray, P., Hui, K., Preece, A.: An expressive constraint language for semantic web applications. In: E-Business and the Intelligent Web: Papers from the IJCAI 2001 Workshop, pp. 46–53 (2001)

    Google Scholar 

  33. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic web. In: Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 14–26. ACM (2014)

    Google Scholar 

  34. Fürber, C., Hepp, M.: Using SPARQL and SPIN for data quality management on the semantic web. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010. LNBIP, vol. 47, pp. 35–46. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12814-1_4

    Chapter  Google Scholar 

  35. Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant.: Sci. Serv. Agents World Wide Web 6, 309–322 (2008)

    Article  Google Scholar 

  36. OGC: Geosparql vocabulary (2012). http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf

  37. Open Geospatial Consortium, et al.: OpenGIS Implementation Standard for Geographic information-Simple feature access-Part 1: Common architecture (2011)

    Google Scholar 

  38. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica 1, 275–316 (1997)

    Article  Google Scholar 

  39. Egenhofer, M.J.: A formal definition of binary topological relationships. In: Litwin, W., Schek, H.-J. (eds.) FODO 1989. LNCS, vol. 367, pp. 457–472. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51295-0_148

    Chapter  Google Scholar 

  40. Provincia di Torino: Linee guida per le reti ecologiche (in Italian) (2014). http://www.provincia.torino.gov.it/territorio/file-storage/download/pdf/pian_territoriale/rete_ecologica/lgsv_lgre.pdf

  41. Krötzsch, M.: Description Logic Rules. Studies on the Semantic Web, vol. 8. IOS Press, Amsterdam (2010)

    MATH  Google Scholar 

  42. Saalfeld, A.: Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartogr. Geogr. Inf. Sci. 26, 7–18 (1999)

    Article  Google Scholar 

  43. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Proceedings of International Semantic Web Conference, pp. 114–129 (2008)

    Google Scholar 

  44. Kostylev, E., Reutter, J., Ugarte, M.: Construct queries in SPARQL. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 31 (2015)

    Google Scholar 

  45. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  46. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-83189-8

    Book  Google Scholar 

  47. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm, pp. 375–398. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2_17

    Chapter  MATH  Google Scholar 

  48. Brailsford, S.C., Potts, C.N., Smith, B.M.: Constraint satisfaction problems: algorithms and applications. Eur. J. Oper. Res. 119, 557–581 (1999)

    Article  Google Scholar 

  49. Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S.: On the design of CGAL a computational geometry algorithms library. Softw. Pract. Exp. 30, 1167–1202 (2000)

    Article  Google Scholar 

  50. Shekhar, S., Xiong, H.: Java Topology Suite (JTS). In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, p. 601. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-35973-1_664

    Chapter  Google Scholar 

  51. Voghera, A., Crivello, R., Ardissono, L., Lucenteforte, M., Savoca, A., La Riccia, L.: Production of spatial representations through collaborative mapping. an experiment. In: Proceedings of 9th International Conference on Innovation in Urban and Regional Planning (INPUT 2016), pp. 356–361 (2016)

    Google Scholar 

  52. Ardissono, L., Lucenteforte, M., Mauro, N., Savoca, A., Voghera, A., La Riccia, L.: OnToMap - semantic community maps for knowledge sharing. In: Proceedings of Hypertext 2017, pp. 317–318. ACM (2017)

    Google Scholar 

  53. Ardissono, L., Ferrero, M., Petrone, G., Segnan, M.: Enhancing collaborative filtering with friendship information. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 353–354. ACM (2017)

    Google Scholar 

  54. The Ushahidi Ecosystem: Ushahidi (2015). http://www.ushahidi.com/about

  55. Hunter, A., et al.: PlanYourPlace - a geospatial infrastructure for sustainable community planning. Int. J. Geomat. Spat. Anal. 22, 223–253 (2012)

    Google Scholar 

  56. Sun, Y., Li, S.: Real-time collaborative GIS: a technological review. ISPRS J. Photogramm. Remote Sens. 115, 143–152 (2016)

    Article  Google Scholar 

  57. Hu, Y., Lv, Z., Wu, J., Janowicz, K., Zhao, X., Yu, B.: A multistage collaborative 3D GIS to support public participation. Int. J. Digit. Earth 8, 212–234 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by project MIMOSA (MultIModal Ontology-driven query system for the heterogeneous data of a SmArtcity, “Progetto di Ateneo Torino_call2014_L2_157”, 2015–17), and by “Ricerca Locale” and “Ricerca Autofinanziata” of the University of Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Torta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torta, G., Ardissono, L., Corona, M., La Riccia, L., Savoca, A., Voghera, A. (2019). GeCoLan: A Constraint Language for Reasoning About Ecological Networks in the Semantic Web. In: Fred, A., et al. Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2017. Communications in Computer and Information Science, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-030-15640-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15640-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15639-8

  • Online ISBN: 978-3-030-15640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics