Skip to main content

Frozen Ocean: Ice Ages and Climate Change

  • Chapter
  • First Online:
Mysterious Ocean
  • 832 Accesses

Abstract

The world has two major ice sheets – in Antarctica and Greenland – but their histories are completely different. The Antarctic ice sheet evolved over 30 million years ago when South America separated from Antarctica to create the Drake Passage. This allowed the Circumpolar Current to form, isolating Antarctica and turning it into the coldest, highest, and driest continent. Greenland is the last major remnant of continental ice sheets that have grown over large parts of North America and Europe repeatedly for the last 2 million years. In this chapter, we will meet Milutin Milanković and learn about his theory for ice ages. Ice sheets over Europe and North America lowered sea level by 130 m, and when they melted, there were huge floods in Washington State in the west, as well as in Eastern Canada. The rising sea level had many consequences: it refilled the Black Sea, possibly explaining the biblical flood story. Rising sea level flooded the Gulf of Carpentaria in Australia and the Persian Gulf Oasis. All the fish, kelp, and corals living on the continental shelves today, including the Great Barrier Reef, are recent arrivals that only moved in over the last 10,000 years or so.

“As the axial tilt increases, the seasonal contrast increases so that winters are colder and summers are warmer.”

Milutin Milanković

Canon of Insolation of the Earth and Its Application to the Problem of the Ice Ages, 1941

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    van den Broeke et al. (2017).

  2. 2.

    Forsberg et al. (2017).

  3. 3.

    Cooper and O’Brien (2004).

  4. 4.

    Harris et al. (2014).

  5. 5.

    Hays et al. (1976).

  6. 6.

    Haug and Tiedemann (1998).

  7. 7.

    Tietsche et al. (2011).

  8. 8.

    Jakobsson et al. (2016).

  9. 9.

    Heinrich (1988).

  10. 10.

    Barber et al. (1999).

  11. 11.

    Ryan et al. (2003).

  12. 12.

    Ryan and Pitman (1998).

  13. 13.

    Jones and Torgersen (1988).

  14. 14.

    Rose (2010).

  15. 15.

    Hill et al. (2011)

  16. 16.

    Maxwell (1968).

  17. 17.

    Davies (1974).

  18. 18.

    Holpley et al. (2007).

  19. 19.

    Davies et al. (1987).

References

  • Barber, D. C., Dyke, A., Hillaire-Marcel, C., Jennings, A. E., Andrews, J. T., Kerwin, M. W., Bilodeau, G., McNeely, R., Southon, J., Morehead, M. D., & Gagnon, J. M. (1999). Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–348.

    Article  Google Scholar 

  • Cooper, A. K., & O’Brien, P. E. (2004). Leg 188 synthesis: Transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. In A. K. Cooper, P. E. O’Brien, & C. Richter (Eds.), Proceedings of the ocean drilling program, scientific results (pp. 1–42). College Station: Ocean Drilling Program.

    Google Scholar 

  • Davies, P.J. (1974). Subsurface solution unconformities at Heron Island, Great Barrier Reef. Proceedings of the 2nd International Coral Reef Symposium, pp. 573–578.

    Google Scholar 

  • Davies, P. J., Symonds, P. A., Feary, D. A., & Pigram, C. J. (1987). Horizontal plate motion: A key allocyclic factor in the evolution of the great barrier reef. Science, 238, 1697–1700.

    Article  Google Scholar 

  • Forsberg, R., Sørensen, L., & Simonsen, S. (2017). Greenland and Antarctica ice sheet mass changes and effects on Global sea level. Surveys in Geophysics, 38(1), 89–104.

    Article  Google Scholar 

  • Harris, P. T., MacMillan-Lawler, M., Rupp, J., & Baker, E. K. (2014). Geomorphology of the oceans. Marine Geology, 352, 4–24.

    Article  Google Scholar 

  • Haug, G. H., & Tiedemann, R. (1998). Effect of the formation of the isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.

    Article  Google Scholar 

  • Hays, J. D., Imbrie, J., & Shackleton, N. J. (1976). Variations in the Earth’s orbit: Pacemaker of the ice ages. Science, 194, 1121–1132.

    Article  Google Scholar 

  • Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142–152.

    Article  Google Scholar 

  • Hill, D. F., Griffiths, S. D., Peltier, W. R., Horton, B. P., & Törnqvist, T. E. (2011). High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. Journal of Geophysical Research: Oceans, 116.

    Google Scholar 

  • Holpley, D., Smithers, S. G., & Parnell, K. E. (2007). The geomorphology of the great barrier reef: Development, diversity and change (p. 546). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jakobsson, M., Nilsson, J., Anderson, L., Backman, J., Bjork, G., Cronin, T. M., Kirchner, N., Koshurnikov, A., Mayer, L., Noormets, R., O’Regan, M., Stranne, C., Ananiev, R., Barrientos Macho, N., Cherniykh, D., Coxall, H., Eriksson, B., Floden, T., Gemery, L., Gustafsson, O., Jerram, K., Johansson, C., Khortov, A., Mohammad, R., & Semiletov, I. (2016). Evidence for an ice shelf covering the Central Arctic Ocean during the penultimate glaciation. Nature Communications, 7. https://doi.org/10.1038/ncomms10365.

  • Jones, M. R., & Torgersen, T. (1988). Late quaternary evolution of Lake Carpentaria on the Australia - New Guinea continental shelf. Australian Journal of Earth Science, 35, 313–324.

    Article  Google Scholar 

  • Maxwell, W. G. H. (1968). Atlas of the great barrier reef (p. 258). Amsterdam: Elsevier.

    Google Scholar 

  • Milanković, M. (1941). Canon of insolation of the earth and its application to the problem of the ice ages (pp. 1–626). Cemian: Royal Serbian Academy Press.

    Google Scholar 

  • Rose, J. I. (2010). New light on human prehistory in the Arabo-Persian Gulf oasis. Current Anthropology, 51, 849–883.

    Article  Google Scholar 

  • Ryan, W. B. F., & Pitman, W. (1998). Noah’s flood: The new scientific discoveries about the event that changed history. New York: Simon and Schuster.

    Google Scholar 

  • Ryan, W. B. F., Major, C. O., Lericolais, G., & Goldstein, S. L. (2003). Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences, 31, 525–554.

    Article  Google Scholar 

  • Tietsche, S., Notz, D., Jungclaus, J. H., & Marotzke, J. (2011). Recovery mechanisms of Arctic summer sea ice. Geophysical Research Letters, 38. https://doi.org/10.1029/2010GL045698.

    Article  Google Scholar 

  • van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco, M., van As, D., van de Berg, W. J., & van Kampenhout, L. (2017). Greenland ice sheet surface mass loss: Recent developments in observation and modeling. Current Climate Change Reports, 3(4), 345–356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harris, P.T. (2020). Frozen Ocean: Ice Ages and Climate Change. In: Mysterious Ocean. Springer, Cham. https://doi.org/10.1007/978-3-030-15632-9_7

Download citation

Publish with us

Policies and ethics