Skip to main content

A Comparison of Machine Learning Techniques to Predict the Risk of Heart Failure

  • Chapter
  • First Online:
Machine Learning Paradigms

Abstract

The chapter explores the supervised machine learning techniques used in different investigations to predict whether a patient will have a heart failure or not. The research focuses on the articles that used the “Cleveland Heart Disease Data Set” from the UCI Machine Learning Repository and performs a comparison of the different techniques used to find the best performance. A conclusion of the best technique is also provided in this chapter. Some examples of the techniques are C4.5 tree, Naïve Bayes, Bayesian Neural Networks (BNN), Support Vector Machine (SVM), Artificial Neural Network (ANN), Nearest Neighbor (KNN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Homepage (2018), http://www.who.int/cardiovascular_diseases/en/. Last Accessed 19 June 2018

  2. HEART Homepage (2018), http://www.heart.org/HEARTORG/Conditions/HeartFailure/Heart-Failure_UCM_002019_SubHomePage.jsp. Last Accessed 19 June 2018

  3. S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From Theory to Algorithms (Cambridge University Press, New York, 2016)

    Google Scholar 

  4. M.M. Al Rahhal et al., Deep learning approach for active classification of electrocardiogram signals. Inf. Sci. 345, 340–354 (2016)

    Google Scholar 

  5. A.F. Khalaf, M.I. Owis, I.A. Yassine, A novel technique for cardiac arrhythmia classification using spectral correlation and support vector machines. Expert Syst. Appl. 42(21), 8361–8368 (2015)

    Article  Google Scholar 

  6. G. Guidi, M.C. Pettenati, P. Melillo, E. Iadanza, A machine learning system to improve heart failure patient assistance. IEEE J. Biomed. Health Inform. 18(6), 1750–1756 (2014)

    Article  Google Scholar 

  7. G. Parthiban, S.K. Srivatsa, Applying machine learning methods in diagnosing heart disease for diabetic patients. Int. J. Appl. Inf. Syst. 3(7), 25–33 (2012)

    Google Scholar 

  8. UCI Heart Disease Data Set (2018), http://archive.ics.uci.edu/ml/datasets/heart+disease. Last Accessed 20 June 2018

  9. S. Marsland, Machine Learning: An Algorithmic Perspective (Chapman and Hall/CRC, 2015)

    Google Scholar 

  10. M. Bramer, Principles of Data Mining (Springer London Ltd., 2013)

    Google Scholar 

  11. E. Frank, M.A. Hall, I.H. Witten, The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”, 4th edn. (Morgan Kaufmann, 2016)

    Google Scholar 

  12. H. Trevor et al., The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2017)

    Google Scholar 

  13. D. Khanna et al., Comparative study of classification techniques (SVM, logistic regression and neural networks) to predict the prevalence of heart disease. Int. J. Mach. Learn. Comput. 5(5), 414–419 (2015)

    Article  Google Scholar 

  14. J.R. Quinlan, Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  15. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  16. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers, 1993)

    Google Scholar 

  17. S.S. Khan, Prediction of angiographic disease status using rule based data mining techniques. Biol. Forum Int. J. 8(2), 103–107 (2016)

    Google Scholar 

  18. L. Breiman, Random Forest, vol. 45 (Kluwer Academic Publishers, 2001), pp. 5–32

    Google Scholar 

  19. S. Kodati, Analysis of heart disease using in data mining tools Orange and Weka. Glob. J. Comput. Sci. Technol. 18–1 (2018)

    Google Scholar 

  20. N. Mutyala, Prediction of heart diseases using data mining and machine learning algorithms and tools. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 3–3 (2018)

    Google Scholar 

  21. M. Shouman et al., Applying k-nearest neighbour in diagnosing heart disease patients. Int. J. Inf. Educ. Technol., 220–223 (2012)

    Google Scholar 

  22. M. Wadhonkar, A data mining approach for classification of heart disease dataset using neural network. Int. J. Appl. Innov. Eng. Manag. 4(5), 426–433 (2015)

    Google Scholar 

  23. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, NY, USA, 1995)

    Book  Google Scholar 

  24. K. Srinivas et al., Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques, in 2010 5th International Conference on Computer Science & Education (2010)

    Google Scholar 

  25. OneR (2018), http://www.saedsayad.com/oner.htm. Last Accessed 19 June 2018

  26. ZeroR (2018), http://chem-eng.utoronto.ca/~datamining/dmc/zeror.htm. Last Accessed 19 June 2018

  27. A.Q. Ansari, N.K. Gupta, Automated diagnosis of coronary heart disease using neuro-fuzzy integrated system, in 2011 World Congress on Information and Communication Technologies (2011)

    Google Scholar 

  28. S. Mokeddem et al., Supervised feature selection for diagnosis of coronary artery disease based on genetic algorithm, in Computer Science & Information Technology (CS & IT) (2013)

    Google Scholar 

  29. N. Ziasabounchi, I. Askerzarde, ANFIS based classification model for heart disease prediction. Int. J. Electr. Comput. Sci. 14(2), 7–12 (2014)

    Google Scholar 

  30. J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system

    Google Scholar 

  31. T. Vivekanandan, N.C.S.N. Iyengar, Optimal feature selection using a modified differential evolution algorithm and its effectiveness for prediction of heart disease. Comput. Biol. Med. 90, 125–136 (2017)

    Article  Google Scholar 

  32. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, MA, 1996)

    MATH  Google Scholar 

  33. N.G.B. Amma, Cardiovascular disease prediction system using genetic algorithm and neural network, in 2012 International Conference on Computing, Communication and Applications (2012)

    Google Scholar 

  34. K. Uyar, A. Ilhan, Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks. Procedia Comput. Sci. 120, 588–593 (2017)

    Article  Google Scholar 

  35. L. Parthiban, Intelligent heart disease prediction system using CANFIS and genetic algorithm. Int. J. Biol. Med. Sci. 3(3), 157–160 (2008)

    Google Scholar 

  36. A. Acharya, Comparative Study of Machine Learning Algorithms for Heart Disease Prediction (Helsinki Metropolia University of Applied Sciences, 2017)

    Google Scholar 

  37. T. Santhanam, E.P. Ephzibah, Heart disease classification using PCA and feed forward neural networks. Min. Intell. Knowl. Explor. Lect. Notes Comput. Sci., 90–99 (2013)

    Google Scholar 

  38. J. Soni, Intelligent and effective heart disease prediction system using weighted associative classifiers. Int. J. Comput. Sci. Eng. 5(6), 2385–2392 (2011)

    Google Scholar 

  39. D. Chaki et al., A comparison of three discrete methods for classification of heart disease data. Bangladesh J. Sci. Ind. Res. 50(4), 293 (2015)

    Article  Google Scholar 

  40. S.K. Sen, Predicting and diagnosing of heart disease using machine learning algorithms. Int. J. Eng. Comput. Sci. (2017)

    Google Scholar 

  41. A. Olsson, D. Nordlof, Early Screening Diagnostic Aid for Heart Disease Using Data Mining (2015)

    Google Scholar 

  42. M. Shouman, T. Turner, R. Stocker, Using decision tree for diagnosing heart disease patients, in 9th Australasian Data Mining Conference, vol. 121, pp. 23–30

    Google Scholar 

  43. R. Das et al., Effective diagnosis of heart disease through neural networks ensembles. Expert. Syst. Appl. 36(4), 7675–7680 (2009)

    Article  Google Scholar 

  44. A. Caliskan, M.E. Yuksel, Classification of coronary artery disease data sets by using a deep neural network. EuroBiotech J. 1(4), 271–277 (2017)

    Article  Google Scholar 

  45. M.A.M. Abushariah et al., Automatic heart disease diagnosis system based on artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) approaches. J. Softw. Eng. Appl. 07(12), 1055–1064 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hajjam El Hassani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garate Escamilla, A.K., Hajjam El Hassani, A., Andres, E. (2019). A Comparison of Machine Learning Techniques to Predict the Risk of Heart Failure. In: Tsihrintzis, G., Virvou, M., Sakkopoulos, E., Jain, L. (eds) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-15628-2_2

Download citation

Publish with us

Policies and ethics