Skip to main content

Machine Learning Methods for Opinion Mining In text: The Past and the Future

  • Chapter
  • First Online:
Machine Learning Paradigms

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 1))

  • 1197 Accesses

Abstract

Sentiment analysis, which is also referred as opinion mining, attracts continuous and increasing interest not only from the academic but also from the business domain. Countless text messages are exchanged on a daily basis within social media, capturing the interest of researchers, journalists, companies, and governments. In these messages people usually declare their opinions or express their feelings, their beliefs and speculations, i.e., their sentiments. The massive use of on-line social networks and the large amount of data collected through them, has raised the attention to analyze the rich information they contain. In this chapter we present a comprehensive overview of the various methods used for sentiment analysis and how they have evolved in the age of big data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms (synsets).

  2. 2.

    http://saifmohammad.com/WebPages/lexicons.html.

  3. 3.

    http://www.sananalytics.com/lab/twitter-sentiment/.

  4. 4.

    https://raw.githubusercontent.com/sinmaniphel/py_isear_dataset/master/isear.csv.

References

  1. R. Astudillo, S. Amir, W. Ling, B. Martins, M.J. Silva, I. Trancoso, INESC-ID: sentiment analysis without hand-coded features or linguistic resources using embedding subspaces, in Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval) (2015), pp. 652–656

    Google Scholar 

  2. S. Baccianella, A. Esuli, F. Sebastiani, Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining, in LREC, vol. 10 (2010), pp. 2200–2204

    Google Scholar 

  3. D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate (2014). arXiv:1409.0473

  4. C. Banea, R. Mihalcea, J. Wiebe, Porting multilingual subjectivity resources across languages. IEEE Trans. Affect. Comput. 4(2), 211–225 (2013)

    Article  Google Scholar 

  5. F. Barbieri, H. Saggion, F. Ronzano, Modelling sarcasm in twitter, a novel approach, in Association for Computational Linguistics (2014), pp. 50–58

    Google Scholar 

  6. M. Baroni, G. Dinu, G. Kruszewski, Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors (2014)

    Google Scholar 

  7. C. Baziotis, N. Pelekis, C. Doulkeridis, Datastories at semeval-2017 task 4: deep LSTM with attention for message-level and topic-based sentiment analysis, in Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 747–754 (2017)

    Google Scholar 

  8. Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

    Article  Google Scholar 

  9. D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    Google Scholar 

  10. M. Bradley, P. Lang, Affective norms for english words (ANEW): instruction manual and affective ratings. Technical report, (1999)

    Google Scholar 

  11. M.H.M.P.M. Büchner, B. Stein, Webis: an ensemble for twitter sentiment detection (2015)

    Google Scholar 

  12. Q. Cao, W. Duan, Q. Gan, Exploring determinants of voting for the helpfulness of online user reviews: a text mining approach. Decis. Support Syst. 50(2), 511–521 (2011)

    Article  Google Scholar 

  13. P. Chikersal, S. Poria, E. Cambria, Sentu: sentiment analysis of tweets by combining a rule-based classifier with supervised learning, in Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) (2015), pp. 647–651

    Google Scholar 

  14. K.W. Church, P. Hanks, Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  15. R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug), 2493–2537 (2011)

    Google Scholar 

  16. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  17. W. Dai, G.R. Xue, Q. Yang, Y. Yu, Transferring naive bayes classifiers for text classification (2007)

    Google Scholar 

  18. S.R. Das, M.Y. Chen, Yahoo! for Amazon: Sentiment extraction from small talk on the Web. Manag. Sci. 53(9), 1375–1388 (2007)

    Article  Google Scholar 

  19. S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, R. Harshman, Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391 (1990)

    Article  Google Scholar 

  20. L. Deng, J. Wiebe, Mpqa 3.0: an entity/event-level sentiment corpus, in Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2015), pp. 1323–1328

    Google Scholar 

  21. J.L. Elman, Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  22. D. Erhan, P.A. Manzagol, Y. Bengio, S. Bengio, P. Vincent, The difficulty of training deep architectures and the effect of unsupervised pre-training. AISTATS 5, 153–160 (2009)

    Google Scholar 

  23. D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, P. Vincent, S. Bengio, Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(Feb), 625–660 (2010)

    Google Scholar 

  24. M. Fernández-Gavilanes, T. Álvarez-López, J. Juncal-Martínez, E. Costa-Montenegro, F.J. González-Castaño, Unsupervised method for sentiment analysis in online texts. Expert. Syst. Appl. 58, 57–75 (2016)

    Article  Google Scholar 

  25. G. Frege, Compound thoughts. Mind 72(285), 1–17 (1963)

    Article  Google Scholar 

  26. X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: a deep learning approach, in Proceedings of the 28th International Conference on Machine Learning (ICML-11) (2011), pp. 513–520

    Google Scholar 

  27. A. Go, R. Bhayani, L. Huang, Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12) (2009)

    Google Scholar 

  28. Y. Goldberg, A primer on neural network models for natural language processing. J. Artif. Intell. Res. (JAIR) 57, 345–420 (2016)

    Article  MathSciNet  Google Scholar 

  29. I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    Google Scholar 

  30. P.A. Gutierrez, M. Perez-Ortiz, J. Sanchez-Monedero, F. Fernandez-Navarro, C. Hervas-Martinez, Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  31. Z.S. Harris, Distributional structure. Word 10(2–3), 146–162 (1954)

    Article  Google Scholar 

  32. V. Hatzivassiloglou, K.R. McKeown, Predicting the semantic orientation of adjectives, in Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics (1997), pp. 174–181

    Google Scholar 

  33. V. Hatzivassiloglou, J.M. Wiebe, Effects of adjective orientation and gradability on sentence subjectivity, in Proceedings of the 18th Conference on Computational Linguistics, Association for Computational Linguistics, vol. 1 (2000), pp. 299–305

    Google Scholar 

  34. M.A. Hearst, Direction-based text interpretation as an information access refinement, in Text-Based Intelligent Systems: Current Research and Practice in Information Extraction and Retrieval (1992), pp. 257–274

    Google Scholar 

  35. G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  36. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  37. M. Hu, B. Liu, Mining and summarizing customer reviews, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2004), pp. 168–177

    Google Scholar 

  38. Y. Jo, A.H. Oh, Aspect and sentiment unification model for online review analysis, in Proceedings of the fourth ACM International Conference on Web Search and Data Mining (ACM, 2011), pp. 815–824

    Google Scholar 

  39. A. Jurek, M.D. Mulvenna, Y. Bi, Improved lexicon-based sentiment analysis for social media analytics. Secur. Inform. 4(1), 9 (2015)

    Article  Google Scholar 

  40. N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences (2014). arXiv:1404.2188

  41. F.H. Khan, U. Qamar, S. Bashir, Swims: semi-supervised subjective feature weighting and intelligent model selection for sentiment analysis. Knowl.-Based Syst. 100, 97–111 (2016)

    Article  Google Scholar 

  42. M. Khodak, N. Saunshi, K. Vodrahalli, A large self-annotated corpus for sarcasm (2017). arXiv:1704.05579

  43. A. Kilgarriff, Wordnet: An Electronic Lexical Database (2000)

    Google Scholar 

  44. Y. Kim, Convolutional neural networks for sentence classification (2014). arXiv:1408.5882

  45. S. Kiritchenko, X. Zhu, C. Cherry, S. Mohammad, NRC-Canada-2014: detecting aspects and sentiment in customer reviews, in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014) (2014), pp. 437–442

    Google Scholar 

  46. S. Kiritchenko, X. Zhu, C. Cherry, S. Mohammad: NRC-Canada-2014: detecting aspects and sentiment in customer reviews, in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), Association for Computational Linguistics and Dublin City University, Dublin, Ireland (2014), pp. 437–442, http://www.aclweb.org/anthology/S14-2076

  47. S. Kiritchenko, X. Zhu, S.M. Mohammad, Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50, 723–762 (2014)

    Article  Google Scholar 

  48. J. Kittler, M. Hatef, R.P. Duin, J. Matas, On combining classifiers. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  49. F. Kokkinos, A. Potamianos, Structural attention neural networks for improved sentiment analysis (2017). arXiv:1701.01811

  50. A. Kolovou, F. Kokkinos, A. Fergadis, P. Papalampidi, E. Iosif, N. Malandrakis, E. Palogiannidi, H. Papageorgiou, S. Narayanan, A. Potamianos, Tweester at SemEval-2017 Task 4: Fusion of Semantic-Affective and pairwise classification models for sentiment analysis in twitter, in Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) (2017), pp. 675–682

    Google Scholar 

  51. A. Krouska, C. Troussas, M. Virvou, The effect of preprocessing techniques on twitter sentiment analysis, in 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, 2016), pp. 1–5

    Google Scholar 

  52. A. Krouska, C. Troussas, M. Virvou, Comparative evaluation of algorithms for sentiment analysis over social networking services. J. Univers. Comput. Sci. 23(8), 755–768 (2017)

    Google Scholar 

  53. Q. Le, T. Mikolov, Distributed representations of sentences and documents, in International Conference on Machine Learning (2014), pp. 1188–1196

    Google Scholar 

  54. C. Lin, Y. He, Joint sentiment/topic model for sentiment analysis, in Proceedings of the 18th Conference on Information and Knowledge Management (CIKM) (2009), pp. 375–384

    Google Scholar 

  55. J. Liu, Y. Zhang, Attention modeling for targeted sentiment, in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, vol. 2 (2017), pp. 572–577

    Google Scholar 

  56. B. Liu, M. Hu, J. Cheng, Opinion observer: analyzing and comparing opinions on the web, in Proceedings of the 14th international conference on World Wide Web (ACM, 2005), pp. 342–351

    Google Scholar 

  57. A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, C. Potts, Learning word vectors for sentiment analysis, in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics, vol. 1 (2011), pp. 142–150

    Google Scholar 

  58. C. Mair, Collins cobuild english language dictionary (1988)

    Google Scholar 

  59. N. Malandrakis, S.S. Narayanan, Therapy language analysis using automatically generated psycholinguistic norms, in Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  60. N. Malandrakis, A. Potamianos, E. Iosif, S. Narayanan, Emotiword: affective lexicon creation with application to interaction and multimedia data, in Internatinal Workshop on computational Intelligence for Multimedia Understanding (Springer, 2011), pp. 30–41

    Google Scholar 

  61. N. Malandrakis, M. Falcone, C. Vaz, J. Bisogni, A. Potamianos, S. Narayanan, SAIL: sentiment analysis using semantic similarity and contrast features, in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval) (2014), pp. 512–516

    Google Scholar 

  62. N. Malandrakis, A. Potamianos, K.J. Hsu, K.N. Babeva, M.C. Feng, G.C. Davison, S. Narayanan, Affective language model adaptation via corpus selection, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2014), pp. 4838–4842

    Google Scholar 

  63. Q. Mei, X. Ling, M. Wondra, H. Su, C. Zhai, Topic sentiment mixture: modeling facets and opinions in weblogs, in Proceedings of the 16th International Conference on World Wide Web (ICWWW) (2007), pp. 171–180

    Google Scholar 

  64. T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space (2013)

    Google Scholar 

  65. T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in Proceedings of Advances in Neural Information Processing systems (NIPS) (2013), pp. 3111–3119

    Google Scholar 

  66. S.M. Mohammad, P.D. Turney, Crowdsourcing a word-emotion association lexicon. Comput. Intell. 29(3), 436–465 (2013)

    Article  MathSciNet  Google Scholar 

  67. S.M. Mohammad, S. Kiritchenko, X. Zhu, NRC-Canada: building the state-of-the-art in sentiment analysis of tweets, in Proceedings of the seventh international workshop on Semantic Evaluation Exercises (SemEval-2013). Atlanta, Georgia, USA (2013)

    Google Scholar 

  68. S.M. Mohammad, X. Zhu, S. Kiritchenko, J. Martin, Sentiment, emotion, purpose, and style in electoral tweets. Inf. Process. Manag. 51(4), 480–499 (2015)

    Article  Google Scholar 

  69. S.M. Mohammad, F. Bravo-Marquez, M. Salameh, S. Kiritchenko, Semeval-2018 Task 1: affect in tweets, in Proceedings of International Workshop on Semantic Evaluation (SemEval-2018). New Orleans, LA, USA (2018)

    Google Scholar 

  70. P. Nakov, A. Nakov, S. Rosenthal, F. Sebastiani, V. Stoyanov, Semeval-2016 task 4: sentiment analysis in twitter, in Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016) (2016), pp. 1–18

    Google Scholar 

  71. F.Å. Nielsen, A new ANEW: evaluation of a word list for sentiment analysis in microblogs, in Proceedings of the ESWC Workshop on Making Sense of Microposts (2011), pp. 93–98

    Google Scholar 

  72. S. Oraby, V. Harrison, L. Reed, E. Hernandez, E. Riloff, M. Walker, Creating and characterizing a diverse corpus of sarcasm in dialogue (2017). arXiv:1709.05404

  73. A. Pak, P. Paroubek, Twitter for sentiment analysis: when language resources are not available, in 2011 22nd International Workshop on Database and Expert Systems Applications (DEXA) (IEEE, 2011), pp. 111–115

    Google Scholar 

  74. E. Palogiannidi, A. Kolovou, F. Christopoulou, E. Iosif, N. Malandrakis, H. Papageorgiou, S. Narayanan, A. Potamianos, Tweester at SemEval 2016: sentiment analysis in twitter using semantic-affective model adaptation, in Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval) (2016)

    Google Scholar 

  75. B. Pang, L. Lee, A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts, in Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics (2004), p. 271

    Google Scholar 

  76. V.M.K. Peddinti, P. Chintalapoodi, Domain adaptation in sentiment analysis of twitter, in Proceedings of the Fifth AAAI Conference on Analyzing Microtext (AAAI Press, 2011), pp. 44–49

    Google Scholar 

  77. J.W. Pennebaker, M.E. Francis, R.J. Booth, Linguistic Inquiry and Word Count: LIWC 2001, vol. 71 (Lawrence Erlbaum Associates, Mahway, 2001)

    Google Scholar 

  78. J. Pennington, R. Socher, C.D. Manning, Glove: global vectors for word representation, in Empirical Methods in Natural Language Processing (EMNLP) (2014), pp. 1532–1543. http://www.aclweb.org/anthology/D14-1162

  79. Q. Qian, M. Huang, J. Lei, X. Zhu, Linguistically regularized LSTMs for sentiment classification (2016). arXiv:1611.03949 (2016)

  80. G. Qiu, X. He, F. Zhang, Y. Shi, J. Bu, C. Chen, Dasa: dissatisfaction-oriented advertising based on sentiment analysis. Expert. Syst. Appl. 37(9), 6182–6191 (2010)

    Article  Google Scholar 

  81. J. Read, J. Carroll, Weakly supervised techniques for domain-independent sentiment classification, in Proceedings of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion (ACM, 2009), pp. 45–52

    Google Scholar 

  82. A. Reyes, P. Rosso, T. Veale, A multidimensional approach for detecting irony in twitter. Lang. Resour. Eval. 47(1), 239–268 (2013)

    Article  Google Scholar 

  83. T. Rocktäschel, E. Grefenstette, K.M. Hermann, T. Kočiskỳ, P. Blunsom, Reasoning about entailment with neural attention (2015). arXiv:1509.06664

  84. S. Rosenthal, P. Nakov, S. Kiritchenko, S. Mohammad, A. Ritter, V. Stoyanov, Semeval-2015 task 10: sentiment analysis in twitter, in Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) (2015), pp. 451–463

    Google Scholar 

  85. S. Rosenthal, N. Farra, P. Nakov, Semeval-2017 task 4: sentiment analysis in twitter, in Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017) (2017), pp. 502–518

    Google Scholar 

  86. J.A. Russell, A. Mehrabian, Evidence for a three-factor theory of emotions. J. Res. Pers. 11(3), 273–294 (1977)

    Article  Google Scholar 

  87. C.N. dos Santos, M. Gatti, Deep convolutional neural networks for sentiment analysis of short texts, in COLING (2014), pp. 69–78

    Google Scholar 

  88. M. Schuster, K.K. Paliwal, Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  89. A. Severyn, A. Moschitti, Unitn: training deep convolutional neural network for twitter sentiment classification, in Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015) (2015), pp. 464–469

    Google Scholar 

  90. R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (2013), pp. 1631–1642

    Google Scholar 

  91. M. Soleymani, D. Garcia, B. Jou, B. Schuller, S.F. Chang, M. Pantic, A survey of multimodal sentiment analysis. Image Vis. Comput. 65, 3–14 (2017)

    Article  Google Scholar 

  92. P.J. Stone, D.C. Dunphy, M.S. Smith, The general inquirer: a computer approach to content analysis (1966)

    Google Scholar 

  93. C. Strapparava, A. Valitutti et al., Wordnet affect: an affective extension of wordnet, in LREC, vol. 4 Citeseer (2004), pp. 1083–1086

    Google Scholar 

  94. M. Taboada, J. Brooke, M. Tofiloski, K. Voll, M. Stede, Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)

    Article  Google Scholar 

  95. D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, B. Qin, Learning sentiment-specific word embedding for twitter sentiment classification, in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1 (2014), pp. 1555–1565

    Google Scholar 

  96. D. Tang, F. Wei, B. Qin, N. Yang, T. Liu, M. Zhou, Sentiment embeddings with applications to sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(2), 496–509 (2016)

    Article  Google Scholar 

  97. I. Titov, R. McDonald, A joint model of text and aspect ratings for sentiment summarization, in Proceedings of ACL-08: HLT (2008), pp. 308–316

    Google Scholar 

  98. L. Torrey, J. Shavlik, Transfer learning (2009)

    Google Scholar 

  99. C. Troussas, A. Krouska, M. Virvou, Evaluation of ensemble-based sentiment classifiers for twitter data, in 2016 7th International Conference on Information, Intelligence, Systems & Applications (IISA) (IEEE, 2016), pp. 1–6

    Google Scholar 

  100. S. Tulyakov, S. Jaeger, V. Govindaraju, D. Doermann, Review of classifier combination methods, in Machine Learning in Document Analysis and Recognition (Springer, 2008), pp. 361–386

    Google Scholar 

  101. P.D. Turney, Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews, in Proceedings of the 40th Annual Meeting on Association for Computational Linguistics (2002), pp. 417–424

    Google Scholar 

  102. D.T. Vo, Y. Zhang, Target-dependent twitter sentiment classification with rich automatic features

    Google Scholar 

  103. B.C. Wallace, Sociolinguistically informed natural language processing: Automating irony detection. BROWN UNIV PROVIDENCE RI, Technical report (2015)

    Google Scholar 

  104. B. Wang, M. Liakata, A. Zubiaga, R. Procter, E. Jensen, Smile: twitter emotion classification using domain adaptation, in 25th International Joint Conference on Artificial Intelligence (2016), p. 15

    Google Scholar 

  105. J. Wang, L.C. Yu, K.R. Lai, X. Zhang, Dimensional sentiment analysis using a regional CNN-LSTM model, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2 (2016), pp. 225–230

    Google Scholar 

  106. X. Wang, Y. Liu, S. Chengjie, B. Wang, X. Wang, Predicting polarities of tweets by composing word embeddings with long short-term memory, in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), vol. 1 (2015), pp. 1343–1353

    Google Scholar 

  107. Y. Wang, M. Huang, L. Zhao et al., Attention-based LSTM for aspect-level sentiment classification, in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (2016), pp. 606–615

    Google Scholar 

  108. C. Whissell, Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language. Psychol. Rep. 105(2), 509–521 (2009)

    Article  Google Scholar 

  109. J.M. Wiebe, Identifying subjective characters in narrative, in Proceedings of the 13th Conference on Computational Linguistics, Association for Computational Linguistics, vol. 2 (1990), pp. 401–406

    Google Scholar 

  110. J. Wiebe, R. Mihalcea, Word sense and subjectivity, in Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics (2006), pp. 1065–1072

    Google Scholar 

  111. J. Wiebe, T. Wilson, C. Cardie, Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2–3), 165–210 (2005)

    Article  Google Scholar 

  112. T. Wilson, J. Wiebe, P. Hoffmann, Recognizing contextual polarity in phrase-level sentiment analysis, in Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing (HLT/EMNLP) (2005), pp. 347–354

    Google Scholar 

  113. B. Xiang, L. Zhou, T. Reuters, Improving twitter sentiment analysis with topic-based mixture modeling and semi-supervised training. ACL 2, 434–439 (2014)

    Google Scholar 

  114. M. Yang, W. Tu, J. Wang, F. Xu, X. Chen, Attention based LSTM for target dependent sentiment classification (2017)

    Google Scholar 

  115. X. Zhang, J. Zhao, Y. LeCun, Character-level convolutional networks for text classification, in Advances in Neural Information Processing Systems (2015), pp. 649–657

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasia Kolovou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolovou, A. (2019). Machine Learning Methods for Opinion Mining In text: The Past and the Future. In: Tsihrintzis, G., Virvou, M., Sakkopoulos, E., Jain, L. (eds) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-15628-2_13

Download citation

Publish with us

Policies and ethics