Skip to main content

Analytics and Evolving Landscape of Machine Learning for Emergency Response

  • Chapter
  • First Online:
Machine Learning Paradigms

Part of the book series: Learning and Analytics in Intelligent Systems ((LAIS,volume 1))

Abstract

The advances in information technology have had a profound impact on emergency management by making unprecedented volumes of data available to the decision makers. This has resulted in new challenges related to the effective management of large volumes of data. In this regard, the role of machine learning in mass emergency and humanitarian crises is constantly evolving and gaining traction. As a branch of artificial intelligence, machine learning technologies have the huge advantages of self-learning, self-organization, and self-adaptation, along with simpleness, generality and robustness. Although these technologies do not perfectly solve issues in emergency management. They have greatly improved the capability and effectiveness of emergency management. In this paper, we review the use of machine learning techniques to support the decision-making processes for the emergency management and discuss their challenges. Additionally, we discuss the challenges and opportunities of the machine learning approaches and intelligent data analysis to distinct phases of emergency management. Based on the literature review, we observe a trend to move from narrow in scope, problem-specific applications of machine learning to solutions that address a wider spectrum of problems, such as situational awareness and real-time threat assessment using diverse streams of data. This chapter also focuses on crowd-sourcing approaches with machine learning to achieve better understanding and decision support during an emergency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    During Hurricane Sandy in 2012: http://www.cbsnews.com/news/social-media-a-news-source-and-toolduring-superstorm-sandy/.

  2. 2.

    https://twitter.com/NevaKey9/status/262860388083843072.

  3. 3.

    https://twitter.com/OccupySandyNJ/status/269183900113326082.

  4. 4.

    https://twitter.com/FEMASandy/status/269180520993259520.

  5. 5.

    https://twitter.com/saflaher/status/598247877295644674.

  6. 6.

    https://www.youtube.com/watch?v=aNZiLYEr6to.

References

  1. R. Agarwal, V. Dhar, Editorial–big data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25(3), 443–448 (2014)

    Article  Google Scholar 

  2. F.E.M. Agency, Federal response plan (FRP). Technical Report (Federal Emergency Management Agency, 1999)

    Google Scholar 

  3. R. Akerkar, Processing big data for emergency management, in Smart Technologies for Emergency Response and Disaster Management (2017), p. 144

    Google Scholar 

  4. S. Akter, S.F. Wamba, Big data and disaster management: a systematic review and agenda for future research. Ann. Oper. Res., 1–21 (2017)

    Google Scholar 

  5. F. Alam, M. Imran, F. Ofli, Image4act: online social media image processing for disaster response, in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 (ACM, 2017), pp. 601–604

    Google Scholar 

  6. F. Alam, F. Ofli, M. Imran, Processing social media images by combining human and machine computing during crises. Int. J. Hum. Comput. Interact. 34(4), 311–327 (2018)

    Article  Google Scholar 

  7. F. Alamdar, M. Kalantari, A. Rajabifard, Towards multi-agency sensor information integration for disaster management. Comput. Environ. Urban Syst. 56, 68–85 (2016)

    Article  Google Scholar 

  8. A. Amaye, K. Neville, A. Pope, Bigpromises: using organisational mindfulness to integrate big data in emergency management decision making. J. Decis. Syst. 25(sup1), 76–84 (2016)

    Article  Google Scholar 

  9. B. Anbalagan, C. Valliyammai, # chennaifloods: leveraging human and machine learning for crisis mapping during disasters using social media, in Proceedings of the IEEE 23rd International Conference on High Performance Computing Workshops (HiPCW) (IEEE, 2016), pp. 50–59

    Google Scholar 

  10. N. Attari, F. Ofli, M. Awad, J. Lucas, S. Chawla, Nazr-cnn: fine-grained classification of UAV imagery for damage assessment, in Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics, DSAA (IEEE, 2017), pp. 50–59

    Google Scholar 

  11. M. Avvenuti, S. Cresci, P.N. Mariantonietta, A. Marchetti, M. Tesconi, Earthquake emergency management by social sensing, in Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops) (IEEE, 2014), pp. 587–592

    Google Scholar 

  12. M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, P.J. Havinga, Distributed event detection in wireless sensor networks for disaster management, in Proceedings of the 2nd International Conference on Intelligent Networking and Collaborative Systems (INCOS) (IEEE, 2010), pp. 507–512

    Google Scholar 

  13. M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, P.J. Havinga, Use of wireless sensor networks for distributed event detection in disaster management applications. Int. J. Space-Based Situat. Comput. 2(1), 58–69 (2012)

    Article  Google Scholar 

  14. H. Bai, G. Yu, A weibo-based approach to disaster informatics: incidents monitor in post-disaster situation via weibo text negative sentiment analysis. Nat. Hazards 83(2), 1177–1196 (2016)

    Article  Google Scholar 

  15. Y. Bai, C. Gao, S. Singh, M. Koch, B. Adriano, E. Mas, S. Koshimura, A framework of rapid regional tsunami damage recognition from post-event terrasar-x imagery using deep neural networks. IEEE Geosci. Remote Sens. Lett. 15(1), 43–47 (2018)

    Article  Google Scholar 

  16. P. Balena, N. Amoroso, C.D. Lucia, Integrating supervised classification in social participation systems for disaster response. a pilot study, in International Conference on Computational Science and Its Applications (Springer, 2017), pp. 675–686

    Google Scholar 

  17. M. Beyreuther, C. Hammer, J. Wassermann, M. Ohrnberger, T. Megies, Constructing a hidden markov model based earthquake detector: application to induced seismicity. Geophys. J. Int. 189(1), 602–610 (2012)

    Article  Google Scholar 

  18. M. Bica, L. Palen, C. Bopp, Visual representations of disaster, in Proceedings of the 20th ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2017) (2017), pp. 1262–1276

    Google Scholar 

  19. P. Boccardo, F.G. Tonolo, Remote sensing role in emergency mapping for disaster response. in Engineering Geology for Society and Territory, vol. 5 (Springer, 2015), pp. 17–24

    Google Scholar 

  20. S. Bontemps, P. Defourny, E.V. Bogaert, O. Arino, V. Kalogirou, J.R. Perez, GLOBCOVER 2009-Products description and validation report (2011)

    Google Scholar 

  21. T. Brants, F. Chen, A. Farahat, A system for new event detection. in Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval (ACM, 2003), pp. 330–337

    Google Scholar 

  22. J. Brown, O.F Ferrians Jr., J. Heginbottom, E. Melnikov, Circum-Arctic map of permafrost and ground-ice conditions. US Geological Survey Reston (1997)

    Google Scholar 

  23. S.H. Burton, K.W. Tanner, C.G. Giraud-Carrier, J.H. West, M.D. Barnes, “Right time, right place” health communication on twitter: value and accuracy of location information. J. Med. Internet Res. 14(6), (2012)

    Article  Google Scholar 

  24. C. Caragea, N. McNeese, A. Jaiswal, G. Traylor, H.W. Kim, P. Mitra, D. Wu, A.H. Tapia, L. Giles, B.J. Jansen, et al., Classifying text messages for the haiti earthquake. in Proceedings of the 8th International Conference on Information Systems for Crisis Response and Management (ISCRAM2011) (Citeseer, 2011)

    Google Scholar 

  25. C. Castillo, Big Crisis Data: Social Media in Disasters and Time-Critical Situations (Cambridge University Press, 2016)

    Google Scholar 

  26. G. Cervone, E. Sava, Q. Huang, E. Schnebele, J. Harrison, N. Waters, Using twitter for tasking remote-sensing data collection and damage assessment: 2013 boulder flood case study. Int. J. Remote Sens. 37(1), 100–124 (2016)

    Article  Google Scholar 

  27. G. Cervone, E. Schnebele, N. Waters, M. Moccaldi, R. Sicignano, Using social media and satellite data for damage assessment in urban areas during emergencies, in Seeing Cities Through Big Data (Springer, 2017), pp. 443–457

    Google Scholar 

  28. A. Chen, N. Chen, H. Ni, et al., Modern Emergency Management Theory and Method (2009)

    Google Scholar 

  29. N. Chen, L. Wenjing, B. Ruizhen, A. Chen, Application of computational intelligence technologies in emergency management: a literature review. Artif. Intell. Rev., 1–38 (2017)

    Google Scholar 

  30. W. Chen, X. Xie, J. Peng, J. Wang, Z. Duan, H. Hong, Gis-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, naïve-bayes tree, and alternating decision tree models. Geomat. Nat. Hazards Risk 8(2), 950–973 (2017)

    Article  Google Scholar 

  31. R. Dimitroff, L. Schmidt, T. Bond, Organizational behavior and disaster. Proj. Manag. J. 36(1), 28–38 (2005)

    Article  Google Scholar 

  32. A. Doan, R. Ramakrishnan, A.Y. Halevy, Crowdsourcing systems on the world-wide web. Commun. ACM 54(4), 86–96 (2011)

    Article  Google Scholar 

  33. S. Doan, B.K.H. Vo, N. Collier, An analysis of twitter messages in the 2011 Tohoku earthquake, in International Conference on Electronic Healthcare (Springer, 2011), pp. 58–66

    Google Scholar 

  34. X. Dong, D. Pi, Novel method for hurricane trajectory prediction based on data mining. Nat. Hazards Earth Syst. Sci. 13(12), 3211–3220 (2013)

    Article  Google Scholar 

  35. R. Dubey, Z. Luo, M. Xu, S.F. Wamba, Developing an integration framework for crowdsourcing and internet of things with applications for disaster response, in Proceedings of the IEEE International Conference on Data Science and Data Intensive Systems (DSDIS) (IEEE, 2015), pp. 520–524

    Google Scholar 

  36. B. Fahimnia, J. Sarkis, H. Davarzani, Green supply chain management: a review and bibliometric analysis. Int. J. Prod. Econ. 162, 101–114 (2015)

    Article  Google Scholar 

  37. E. Fersini, E. Messina, F.A. Pozzi, Earthquake management: a decision support system based on natural language processing. J. Ambient Intell. Humaniz. Comput. 8(1), 37–45 (2017)

    Article  Google Scholar 

  38. A. Ghenai, Y. Mejova, Catching Zika fever: application of crowdsourcing and machine learning for tracking health misinformation on twitter. arXiv:1707.03778 (2017)

  39. K. Grolinger, E. Mezghani, M. Capretz, E. Exposito, Knowledge as a service framework for collaborative data management in cloud environments-disaster domain, in Managing Big Data in Cloud Computing Environments, (2016), pp. 183–209

    Chapter  Google Scholar 

  40. A. Gupta, H. Lamba, P. Kumaraguru, $1.00 per rt# bostonmarathon# prayforboston: analyzing fake content on twitter, in eCrime Researchers Summit (eCRS), 2013 (IEEE, 2013), pp. 1–12

    Google Scholar 

  41. G.D. Haddow, J.A. Bullock, D.P. Coppola, Introduction to Emergency Management (Butterworth-Heinemann, 2017)

    Google Scholar 

  42. P. Harris, J. Anitha, Post earthquake disaster awareness to emergency task force using crowdsourced data, in Proceedings of the IEEE International Conference on Industrial and Information Systems (ICIIS) (IEEE, 2017), pp. 1–6

    Google Scholar 

  43. T. Hastie, R. Tibshirani, J. Friedman, Unsupervised learning, in The Elements of Statistical Learning (Springer, 2009), pp. 485–585

    Google Scholar 

  44. B.T. Hazen, C.A. Boone, J.D. Ezell, L.A. Jones-Farmer, Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Int. J. Prod. Econ. 154, 72–80 (2014)

    Article  Google Scholar 

  45. H. Higuchi, J. Fujimura, T. Nakamura, K. Kogo, K. Tsudaka, T. Wada, H. Okada, K. Ohtsuki, Disaster detection by statistics and svm for emergency rescue evacuation support system, in Proceedings of the 43th International Conference on Parallel Processing Workshops (ICCPW) (IEEE, 2014), pp. 349–354

    Google Scholar 

  46. R.C. Hoetzlein, Visual communication in times of crisis: the fukushima nuclear accident. Leonardo 45(2), 113–118 (2012)

    Article  Google Scholar 

  47. C. Howard, D. Jones, S. Reece, A. Waldock, Learning to trust the crowd: validating crowdsources for improved situational awareness in disaster response. Procedia Eng. 159, 141–147 (2016)

    Article  Google Scholar 

  48. J. Howe, The rise of crowdsourcing. Wired Mag. 14(6), 1–4 (2006)

    Google Scholar 

  49. V. Hristidis, S.C. Chen, T. Li, S. Luis, Y. Deng, Survey of data management and analysis in disaster situations. J. Syst. Softw. 83(10), 1701–1714 (2010)

    Article  Google Scholar 

  50. Q. Huang, G. Cervone, D. Jing, C. Chang, Disastermapper: a cybergis framework for disaster management using social media data, in Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2015, ed. by V. Chandola, R.R. Vatsavai (ACM, 2015), pp. 1–6

    Google Scholar 

  51. M. Imran, AIDR: artificial intelligence for disaster. Ph.D. thesis, Qatar Computing Research Institute (2014)

    Google Scholar 

  52. M. Imran, C. Castillo, J. Lucas, P. Meier, J. Rogstadius, Coordinating human and machine intelligence to classify microblog communications in crises, in ISCRAM (2014)

    Google Scholar 

  53. M. Imran, C. Castillo, J. Lucas, P. Meier, S. Vieweg, AIDR: artificial intelligence for disaster response, in Proceedings of the 23rd International Conference on World Wide Web (ACM, 2014), pp. 159–162

    Google Scholar 

  54. M. Imran, S. Elbassuoni, C. Castillo, F. Diaz, P. Meier, Extracting information nuggets from disaster-related messages in social media, in Iscram (2013)

    Google Scholar 

  55. M. Imran, P. Mitra, C. Castillo, Twitter as a lifeline: human-annotated twitter corpora for NLP of crisis-related messages, in Proceedings of the Tenth International Conference on Language Resources and Evaluation LREC 2016 (2016)

    Google Scholar 

  56. M. Izadi, A. Mohammadzadeh, A. Haghighattalab, A new neuro-fuzzy approach for post-earthquake road damage assessment using GA and SVM classification from quickbird satellite images. J. Indian Soc. Remote Sens. 45(6), 965–977 (2017)

    Article  Google Scholar 

  57. D.M. Jiang, Z.B. Li, The evaluation of city emergency management system results based on BP neural network, in Applied Mechanics and Materials, vol. 263 (Trans Tech Publication, 2013), pp. 3288–3291

    Google Scholar 

  58. M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. A.R. Joshi, I. Tarte, S. Suresh, S.G. Koolagudi, Damage identification and assessment using image processing on post-disaster satellite imagery, in IEEE Transaction on Global Humanitarian Technology Conference (GHTC) (IEEE 2017), pp. 1–7

    Google Scholar 

  60. L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  61. C.Y. Kao, C.H. Loh, Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct. Control Health Monit. 20(3), 282–303 (2013)

    Article  Google Scholar 

  62. H.S. Kim, C.H. Ho, J.H. Kim, P.S. Chu, Track-pattern-based model for seasonal prediction of tropical cyclone activity in the western North Pacific. J. Clim. 25(13), 4660–4678 (2012)

    Article  Google Scholar 

  63. S.W. Kim, J.A. Melby, N.C. Nadal-Caraballo, J. Ratcliff, A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling. Nat. Hazards 76(1), 565–585 (2015)

    Article  Google Scholar 

  64. Q. Kong, R.M. Allen, L. Schreier, Y.W. Kwon, Myshake: a smartphone seismic network for earthquake early warning and beyond. Sci. Adv. 2(2), e1501055 (2016)

    Article  Google Scholar 

  65. S.B. Kotsiantis, I. Zaharakis, P. Pintelas, Supervised machine learning: a review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 160, 3–24 (2007)

    Google Scholar 

  66. V.V. Krzhizhanovskaya, G. Shirshov, N. Melnikova, R.G. Belleman, F. Rusadi, B. Broekhuijsen, B. Gouldby, J. Lhomme, B. Balis, M. Bubak et al., Flood early warning system: design, implementation and computational modules. Procedia Comput. Sci. 4, 106–115 (2011)

    Article  Google Scholar 

  67. S. Kumar, G. Barbier, M.A. Abbasi, H. Liu, Tweettracker: an analysis tool for humanitarian and disaster relief, in Proceedings of the Fifth International Conference on Weblogs and Social Media, ed. by L.A. Adamic, R.A. Baeza-Yates, S. Counts (The AAAI Press, Barcelona, Catalonia, Spain, 2011), 17–21 July 2011

    Google Scholar 

  68. A. Kurkcu, F. Zuo, J. Gao, E.F. Morgul, K. Ozbay, Crowdsourcing incident information for disaster response using twitter, in Proceedings of the 65th Annual Meeting of Transportation Research Board (2017)

    Google Scholar 

  69. P.M. Landwehr, K.M. Carley, Social media in disaster relief, in Data Mining and Knowledge Discovery for Big Data (Springer, 2014), pp. 225–257

    Google Scholar 

  70. B. Lehner, P. Döll, Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296(1–4), 1–22 (2004)

    Article  Google Scholar 

  71. B. Lehner, C.R. Liermann, C. Revenga, C. Vörösmarty, B. Fekete, P. Crouzet, P. Döll, M. Endejan, K. Frenken, J. Magome et al., High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9(9), 494–502 (2011)

    Article  Google Scholar 

  72. M. Lenzerini, Data integration: a theoretical perspective, in Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ed. by L. Popa, S. Abiteboul, P.G. Kolaitis (ACM, 2002), pp. 233–246

    Google Scholar 

  73. H. Li, D. Caragea, C. Caragea, N. Herndon, Disaster response aided by tweet classification with a domain adaptation approach. J. Contingencies Crisis Manag. 26(1), 16–27 (2018)

    Article  Google Scholar 

  74. J. Li, Z. He, J. Plaza, S. Li, J. Chen, H. Wu, Y. Wang, Y. Liu, Social media: new perspectives to improve remote sensing for emergency response. Proc. IEEE 105(10), 1900–1912 (2017)

    Article  Google Scholar 

  75. T. Li, N. Xie, C. Zeng, W. Zhou, L. Zheng, Y. Jiang, Y. Yang, H. Ha, W. Xue, Y. Huang, S. Chen, J.K. Navlakha, S.S. Iyengar, Data-driven techniques in disaster information management. ACM Comput. Surv. 50(1), 1 (2017)

    Article  Google Scholar 

  76. J. Liang, P. Jacobs, S. Parthasarathy, Human-guided flood mapping: from experts to the crowd (2018)

    Google Scholar 

  77. S.B. Liu, Crisis crowdsourcing framework: designing strategic configurations of crowdsourcing for the emergency management domain. Comput. Support. Coop. Work (CSCW) 23(4–6), 389–443 (2014)

    Article  Google Scholar 

  78. C. Mariano, E. Morales, A new distributed reinforcement learning algorithm for multiple objective optimization problems, in Advances in Artificial Intelligence (Springer, 2000), pp. 290–299

    Google Scholar 

  79. F. Martínez-Álvarez, A.T. Lora, A. Morales-Esteban, J.C. Riquelme, Computational intelligence techniques for predicting earthquakes, in Hybrid Artificial Intelligent Systems—6th International Conference, HAIS 2011, ed. by E. Corchado, M. Kurzynski, M. Wozniak, Wroclaw, Poland, May 23–25, 2011, Proceedings, Part II, Lecture Notes in Computer Science, vol. 6679 (Springer, 2011), pp. 287–294

    Google Scholar 

  80. S. Mehrotra, X. Qiu, Z. Cao, A. Tate, Technological challenges in emergency response. IEEE Intell. Syst. 28(4), 5–8 (2013)

    Article  Google Scholar 

  81. K. Mori, T. Nakamura, J. Fujimura, K. Tsudaka, T. Wada, H. Okada, K. Ohtsuki, Development of ERESS in panic-type disasters: disaster recognition algorithm by buffering-SVM, in Proceedings of the 13th International Conference on ITS Telecommunications (ITST) (IEEE, 2013), pp. 337–343

    Google Scholar 

  82. M. Moustra, M. Avraamides, C. Christodoulou, Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals. Expert Syst. Appl. 38(12), 15032–15039 (2011)

    Article  Google Scholar 

  83. S. Murali, V. Krishnapriya, A. Thomas, Crowdsourcing for disaster relief: a multi-platform model, in Distributed Computing (Electrical Circuits and Robotics (DISCOVER), IEEE (IEEE, VLSI, 2016), pp. 264–268

    Google Scholar 

  84. A. Nadi, A. Edrisi, Adaptive multi-agent relief assessment and emergency response. Int. J. Disaster Risk Reduct. 24, 12–23 (2017)

    Article  Google Scholar 

  85. A. Nagy, J. Stamberger, Crowd sentiment detection during disasters and crises, in Proceedings of the 9th International ISCRAM Conference (2012) pp. 1–9

    Google Scholar 

  86. T.H. Nazer, F. Morstatter, H. Dani, H. Liu, Finding requests in social media for disaster relief, in Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (IEEE, 2016), pp. 1410–1413

    Google Scholar 

  87. T.H. Nazer, G. Xue, Y. Ji, H. Liu, Intelligent disaster response via social media analysis a survey. ACM SIGKDD Explor. Newsl. 19(1), 46–59 (2017)

    Article  Google Scholar 

  88. D.T. Nguyen, F. Alam, F. Ofli, M. Imran, Automatic image filtering on social networks using deep learning and perceptual hashing during crises. Comput. Res. Repository (2017). arXiv:1704.02602

  89. D.T. Nguyen, F. Ofli, M. Imran, P. Mitra, Damage assessment from social media imagery data during disasters. in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 (ACM, 2017) pp. 569–576

    Google Scholar 

  90. G.C. Ohlmacher, J.C. Davis, Using multiple logistic regression and gis technology to predict landslide hazard in northeast kansas, usa. Eng. Geol. 69(3–4), 331–343 (2003)

    Article  Google Scholar 

  91. O. Okolloh, Ushahidi, or testimony: Web 2.0 tools for crowdsourcing crisis information. Participatory Learn. Action 59(1), 65–70 (2009)

    Google Scholar 

  92. A. Olteanu, C. Castillo, F. Diaz, S. Vieweg, Crisislex: a lexicon for collecting and filtering microblogged communications in crises, in Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM) (2014)

    Google Scholar 

  93. A. Olteanu, S. Vieweg, C. Castillo, What to expect when the unexpected happens: social media communications across crises, in Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (ACM, 2015), pp. 994–1009

    Google Scholar 

  94. K. Pabreja, Clustering technique to interpret numerical weather prediction output products for forecast of cloudburst. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 3(1), 2996–2999 (2012)

    Google Scholar 

  95. N. Pandey, S. Natarajan, How social media can contribute during disaster events? case study of chennai floods 2015, in Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI) (IEEE, 2016), pp. 1352–1356

    Google Scholar 

  96. F. Pappenberger, P. Matgen, K.J. Beven, J.B. Henry, L. Pfister et al., Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour. 29(10), 1430–1449 (2006)

    Article  Google Scholar 

  97. M.C. Peel, B.L. Finlayson, T.A. McMahon, Updated world map of the köppen-geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 4(2), 439–473 (2007)

    Article  Google Scholar 

  98. B. Pengel, V. Krzhizhanovskaya, N. Melnikova, G. Shirshov, A. Koelewijn, A. Pyayt, I. Mokhov et al., Flood early warning system: sensors and internet. IAHS Red Book 357, 445–453 (2013)

    Google Scholar 

  99. B.T. Pham, K. Khosravi, I. Prakash, Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at pauri garhwal area, uttarakhand, india. Environ. Process. 4(3), 711–730 (2017)

    Article  Google Scholar 

  100. K.J. Piczak, ESC: dataset for environmental sound classification, in Proceedings of the 23rd ACM International Conference on Multimedia (ACM, 2015), pp. 1015–1018

    Google Scholar 

  101. M. Poblet, E. García-Cuesta, P. Casanovas, Crowdsourcing roles, methods and tools for data-intensive disaster management. Inf. Syst. Front., 1–17 (2017)

    Google Scholar 

  102. D. Pohl, A. Bouchachia, H. Hellwagner, Social media for crisis management: clustering approaches for sub-event detection. Multimed. Tools Appl. 74(11), 3901–3932 (2015)

    Article  Google Scholar 

  103. H. Purohit, C. Castillo, F. Diaz, A. Sheth, P. Meier, Emergency-relief coordination on social media: automatically matching resource requests and offers. First Monday 19(1) (2013)

    Google Scholar 

  104. J.R. Ragini, P.R. Anand, V. Bhaskar, Mining crisis information: a strategic approach for detection of people at risk through social media analysis. Int. J. Disaster Risk Reduct. 27, 556–566 (2018)

    Article  Google Scholar 

  105. S.D. Ramchurn, T.D. Huynh, Y. Ikuno, J. Flann, F. Wu, L. Moreau, N.R. Jennings, J.E. Fischer, W. Jiang, T. Rodden et al., HAC-ER: a disaster response system based on human-agent collectives, in Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems (2015), pp. 533–541

    Google Scholar 

  106. K. Ravikumar, A.R. Kannan, Spatial data mining for prediction of natural events and disaster management based on fuzzy logic using hybrid PSO (2018)

    Google Scholar 

  107. B. Resch, F. Usländer, C. Havas, Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment. Cartogr. Geogr. Inf. Sci., 1–15 (2017)

    Google Scholar 

  108. B. Revilla-Romero, J. Thielen, P. Salamon, T.D. Groeve, G. Brakenridge, Evaluation of the satellite-based global flood detection system for measuring river discharge: influence of local factors. Hydrol. Earth Syst. Sci. 18(11), 4467 (2014)

    Article  Google Scholar 

  109. J. Reyes, A. Morales-Esteban, F. Martínez-Álvarez, Neural networks to predict earthquakes in chile. Appl. Soft Comput. 13(2), 1314–1328 (2013)

    Article  Google Scholar 

  110. V. Sadhu, G. Salles-Loustau, D. Pompili, S. Zonouz, V. Sritapan, Argus: Smartphone-enabled human cooperation via multi-agent reinforcement learning for disaster situational awareness, in Proceedings of the IEEE International Conference on Autonomic Computing (ICAC) (IEEE, 2016), pp. 251–256

    Google Scholar 

  111. R.R. Sahay, A. Srivastava, Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Resour. Manag. 28(2), 301–317 (2014)

    Article  Google Scholar 

  112. T. Sakaki, M. Okazaki, Y. Matsuo, Earthquake shakes twitter users: real-time event detection by social sensors. in Proceedings of the 19th International Conference on World Wide Web (ACM, 2010), pp. 851–860

    Google Scholar 

  113. T. Sakaki, M. Okazaki, Y. Matsuo, Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Trans. Knowl. Data Eng. 25(4), 919–931 (2013)

    Article  Google Scholar 

  114. J. Salamon, C. Jacoby, J.P. Bello, A dataset and taxonomy for urban sound research, in Proceedings of the 22nd ACM International Conference on Multimedia (ACM, 2014), pp. 1041–1044

    Google Scholar 

  115. M. Salehi, L.I. Rusu, T. Lynar, A. Phan, Dynamic and robust wildfire risk prediction system: an unsupervised approach, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2016), pp. 245–254

    Google Scholar 

  116. A. Salfinger, S. Girtelschmid, B. Pröll, W. Retschitzegger, W. Schwinger, Crowd-sensing meets situation awareness: a research roadmap for crisis management, in Proceedings of the 48th Hawaii International Conference on System Sciences, HICSS (Hawaii, USA, Kauai, 2015), pp. 153–162

    Google Scholar 

  117. G.D. Saxton, O. Oh, R. Kishore, Rules of crowdsourcing: models, issues, and systems of control. Inf. Syst. Manag. 30(1), 2–20 (2013)

    Article  Google Scholar 

  118. H. Shah, R. Ghazali, Prediction of earthquake magnitude by an improved ABC-MLP, in Developments in E-systems Engineering (DeSE) (IEEE, 2011), pp. 312–317

    Google Scholar 

  119. X. Shao, X. Li, L. Li, X. Hu, The application of ant-colony clustering algorithm to earthquake prediction, in Advances in Electronic Engineering, Communication and Management, vol. 2 (Springer, 2012), pp. 145–150

    Google Scholar 

  120. S. Shen, N. Murzintcev, C. Song, C. Cheng, Information retrieval of a disaster event from cross-platform social media. Inf. Discov. Deliv. 45(4), 220–226 (2017)

    Google Scholar 

  121. J.P. Singh, Y.K. Dwivedi, N.P. Rana, A. Kumar, K.K. Kapoor, Event classification and location prediction from tweets during disasters. Ann. Oper. Res., 1–21 (2017)

    Google Scholar 

  122. X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, Prediction of human emergency behavior and their mobility following large-scale disaster, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2014), pp. 5–14

    Google Scholar 

  123. J.H. Sorensen, Hazard warning systems: review of 20years of progress. Nat. Hazards Rev. 1(2), 119–125 (2000)

    Article  Google Scholar 

  124. T. Spielhofer, R. Greenlaw, D. Markham, A. Hahne, Data mining twitter during the UK floods: investigating the potential use of social media in emergency management, in Proceedings of the 3rd International Conference on Information and Communication Technologies for Disaster Management (ICT-DM) (IEEE, 2016), pp. 1–6

    Google Scholar 

  125. Y. Su, S. Chelluboina, M. Hahsler, M.H. Dunham, A new data mining model for hurricane intensity prediction, in Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (ICDMW) (IEEE, 2010), pp. 98–105

    Google Scholar 

  126. A.H. Tapia, K. Bajpai, B.J. Jansen, J. Yen, L. Giles, Seeking the trustworthy tweet: can microblogged data fit the information needs of disaster response and humanitarian relief organizations, in Proceedings of the 8th International ISCRAM Conference (2011), pp. 1–10

    Google Scholar 

  127. M.S. Tehrany, B. Pradhan, M.N. Jebur, Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in gis. J. Hydrol. 504, 69–79 (2013)

    Article  Google Scholar 

  128. H.N. Teodorescu, Using analytics and social media for monitoring and mitigation of social disasters. Procedia Eng. 107, 325–334 (2015)

    Article  Google Scholar 

  129. A. Trekin, G. Novikov, G. Potapov, V. Ignatiev, E. Burnaev, Satellite imagery analysis for operational damage assessment in emergency situations (2018). arXiv:1803.00397

  130. B. Truong, C. Caragea, A. Squicciarini, A.H. Tapia, Identifying valuable information from twitter during natural disasters. Proc. Assoc. Inf. Sci. Technol. 51(1), 1–4 (2014)

    Article  Google Scholar 

  131. A. Vetrivel, N. Kerle, M. Gerke, F. Nex, G. Vosselman, Towards automated satellite image segmentation and classification for assessing disaster damage using data-specific features with incremental learning (2016)

    Google Scholar 

  132. S. Vieweg, A.L. Hughes, K. Starbird, L. Palen, Microblogging during two natural hazards events: what twitter may contribute to situational awareness, in Proceedings of the 28th International Conference on Human Factors in Computing Systems, CHI, ed. by E.D. Mynatt, D. Schoner, G. Fitzpatrick, S.E. Hudson, W.K. Edwards, T. Rodden (ACM, Atlanta, Georgia, 2010), pp. 1079–1088

    Google Scholar 

  133. Z. Wang, C. Lai, X. Chen, B. Yang, S. Zhao, X. Bai, Flood hazard risk assessment model based on random forest. J. Hydrol 527, 1130–1141 (2015)

    Article  Google Scholar 

  134. W. Xu, L. Liu, W. Shang, Leveraging cross-media analytics to detect events and mine opinions for emergency management. Online Inf. Rev. 41(4), 487–506 (2017)

    Article  Google Scholar 

  135. D. Yamazaki, F. O’Loughlin, M.A. Trigg, Z.F. Miller, T.M. Pavelsky, P.D. Bates, Development of the global width database for large rivers. Water Resour. Res. 50(4), 3467–3480 (2014)

    Article  Google Scholar 

  136. D. Yang, D. Zhang, K. Frank, P. Robertson, E. Jennings, M. Roddy, M. Lichtenstern, Providing real-time assistance in disaster relief by leveraging crowdsourcing power. Pers. Ubiquitous Comput. 18(8), 2025–2034 (2014)

    Article  Google Scholar 

  137. J. Ye, T. Kobayashi, X. Wang, H. Tsuda, M. Masahiro, Audio data mining for anthropogenic disaster identification: an automatic taxonomy approach (IEEE Trans. Emerg. Top, Comput, 2017)

    Google Scholar 

  138. J. Yin, A. Lampert, M. Cameron, B. Robinson, R. Power, Using social media to enhance emergency situation awareness. IEEE Intell. Syst. 27(6), 52–59 (2012)

    Article  Google Scholar 

  139. D.K. Yoon, S. Jeong, Assessment of community vulnerability to natural disasters in Korea by using gis and machine learning techniques, in Quantitative Regional Economic and Environmental Analysis for Sustainability in Korea (Springer, 2016), pp. 123–140

    Google Scholar 

  140. A.T. Zagorecki, E.J. David, J. Ristvej, Data mining and machine learning in the context of disaster and crisis management. Int. J. Emerg. Manag. 9(4), 351–365 (2013)

    Article  Google Scholar 

  141. M.A. Zanini, F. Faleschini, P. Zampieri, C. Pellegrino, G. Gecchele, M. Gastaldi, R. Rossi, Post-quake urban road network functionality assessment for seismic emergency management in historical centres. Struct. Infrastruct. Eng. 13(9), 1117–1129 (2017)

    Article  Google Scholar 

  142. X.Y. Zhang, X. Li, X. Lin, The data mining technology of particle swarm optimization algorithm in earthquake prediction, in Advanced Materials Research, vol. 989 (Trans Tech Publication, 2014), pp. 1570–1573

    Google Scholar 

  143. Y. Zhang, H.V. Burton, H. Sun, M. Shokrabadi, A machine learning framework for assessing post-earthquake structural safety. Struct. Saf. 72, 1–16 (2018)

    Article  Google Scholar 

  144. L. Zheng, C. Shen, L. Tang, T. Li, S. Luis, S. Chen, Applying data mining techniques to address disaster information management challenges on mobile devices, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ed. by C. Apté, J. Ghosh, P. Smyth (ACM, 2011), pp. 283–291

    Google Scholar 

  145. B. Zmazek, L. Todorovski, S. Džeroski, J. Vaupotič, I. Kobal, Application of decision trees to the analysis of soil radon data for earthquake prediction. Appl. Radiat. Isot. 58(6), 697–706 (2003)

    Article  Google Scholar 

  146. B. Zmazek, M. Živčić, J. Vaupotič, M. Bidovec, M. Poljak, I. Kobal, Soil radon monitoring in the Krško Basin. Slovenia. Appl. Radiat. Isot. 56(4), 649–657 (2002)

    Article  Google Scholar 

  147. A. Zubiaga, H. Ji, Tweet, but verify: epistemic study of information verification on twitter. Soc. Netw. Anal. Min. 4(1), 163 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work is funded from the Research Council of Norway (RCN) and the Norwegian Centre for International Cooperation in Education (SiU) grant through INTPART programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Akerkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, M., Akerkar, R. (2019). Analytics and Evolving Landscape of Machine Learning for Emergency Response. In: Tsihrintzis, G., Virvou, M., Sakkopoulos, E., Jain, L. (eds) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-15628-2_11

Download citation

Publish with us

Policies and ethics