Skip to main content

Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics

  • Chapter
  • First Online:
Electrical Atomic Force Microscopy for Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Two-dimensional materials (2DM), such as the semimetal graphene, semiconducting MoS2 and insulating h-BN, are currently the object of wide interests for next generation electronic applications. Despite recent progresses in large area synthesis of 2DMs, their electronic properties are still affected by nano- or micro-scale defects/inhomogeneities related to the specific growth process. Electrical scanning probe methods, such as conductive atomic force microscopy (C-AFM), are essential tools to investigate charge transport phenomena in 2DMs with nanoscale resolution. This chapter illustrates some case studies of C-AFM applications to graphene, MoS2 and h-BN. Furthermore, the results of the nanoscale electrical characterization have been correlated to the behavior of macroscopic devices fabricated on these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  Google Scholar 

  3. Q.H. Wang, K.K.-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Google Scholar 

  4. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014)

    Article  Google Scholar 

  5. K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004)

    Article  ADS  Google Scholar 

  6. K.I. Bolotin, K.J. Sikes, J.H. Hone, L. Stormer, P. Kim, Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)

    Article  ADS  Google Scholar 

  7. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    Article  ADS  Google Scholar 

  8. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011)

    Article  ADS  Google Scholar 

  9. F. Giannazzo, V. Raineri, Graphene: synthesis and nanoscale characterization of electronic properties. Riv. del Nuovo Cimento 35, 267–304 (2012)

    Google Scholar 

  10. S. Sonde, F. Giannazzo, C. Vecchio, R. Yakimova, E. Rimini, V. Raineri, Role of graphene/substrate interface on the local transport properties of the two-dimensional electron gas. Appl. Phys. Lett. 97, 132101 (2010)

    Article  ADS  Google Scholar 

  11. F. Giannazzo, S. Sonde, R. Lo Nigro, E. Rimini, V. Raineri, Mapping the density of scattering centers limiting the electron mean free path in graphene. Nano Lett. 11, 4612–4618 (2011)

    Article  ADS  Google Scholar 

  12. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4, 611–622 (2010)

    Article  ADS  Google Scholar 

  13. L. Liao, X. Duan, Graphene for radio frequency electronics. Mater. Today 15, 328–338 (2012)

    Article  Google Scholar 

  14. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)

    Article  ADS  Google Scholar 

  15. F. Schwierz, Graphene transistors. Nat. Nanotech. 5, 487–496 (2010)

    Article  ADS  Google Scholar 

  16. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  17. Y. Yoon, K. Ganapathi, S. Salahuddin, How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011)

    Article  ADS  Google Scholar 

  18. K. Kaasbjerg, K.S. Thygesen, K. Jacobsen, W, Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012)

    Google Scholar 

  19. B. Radisavljevic, A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013)

    Article  ADS  Google Scholar 

  20. M.S. Fuhrer, J. Hone, Measurement of mobility in dual-gate MoS2 transistor. Nat. Nanotech. 8, 146–147 (2013)

    Article  ADS  Google Scholar 

  21. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014)

    Article  ADS  Google Scholar 

  22. L. Song, L.J. Ci, H. Lu, P.B. Sorokin, C.H. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)

    Article  ADS  Google Scholar 

  23. K.K. Kim, A. Hsu, X.T. Jia, S.M. Kim, Y.M. Shi, M. Dresselhaus, T. Palacios, J. Kong, Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012)

    Article  Google Scholar 

  24. M.W. Iqbal, M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, J. Eom, High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015)

    Article  ADS  Google Scholar 

  25. N. Petrone, T. Chari, I. Meric, L. Wang, K.L. Shepard, J. Hone, Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride. ACS Nano 9, 8953–8959 (2015)

    Article  Google Scholar 

  26. T. Chari, I. Meric, C. Dean, K. Shepard, Properties of self-aligned short-channel graphene field-effect transistors based on boron-nitride-dielectric encapsulation and edge contacts. IEEE Trans. Electron Devices 62, 4322–4326 (2015)

    Article  ADS  Google Scholar 

  27. M.S. Bresnehan, M.J. Hollander, M. Wetherington, M. LaBella, K.A. Trumbull, R. Cavallero, D.W. Snyder, J.A. Robinson, Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward Wafer-Scale, high-performance devices. ACS Nano 6, 5234–5241 (2012)

    Article  Google Scholar 

  28. E. Kim, T.H. Yu, E.S. Song, B. Yu, Chemical vapor deposition-assembled graphene field-effect transistor on hexagonal boron nitride. Appl. Phys. Lett. 98, 262103 (2011)

    Article  ADS  Google Scholar 

  29. Y. Hattori, T. Taniguchi, K. Watanabe, K. Nagashio, Layer-by-layer dielectric breakdown of hexagonal boron nitride. ACS Nano 9, 916–921 (2015)

    Article  Google Scholar 

  30. A. Lipp, K.A. Schwetz, K. Hunold, Hexagonal boron nitride: fabrication, properties and applications. J. Eur. Ceram. Soc. 5, 3–9 (1989)

    Article  Google Scholar 

  31. T. Roy, M. Tosun, J.K. Kang, A.B. Sachid, S.B. Desai, M. Hettick, C.C. Hu, A. Javey, Field-effect transistors built from all two-dimensional material components. ACS Nano 8, 6259–6264 (2014)

    Article  Google Scholar 

  32. F. Giannazzo, G. Greco, F. Roccaforte, S.S. Sonde, Vertical transistors based on 2D materials: status and prospects. Crystals 8, 70 (2018)

    Article  Google Scholar 

  33. H. Wang, F. Liu, W. Fu, Z. Fang, W. Zhoue, Z. Liu, Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale 6, 12250–12272 (2014)

    Article  ADS  Google Scholar 

  34. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)

    Article  ADS  Google Scholar 

  35. H. Yang, J. Heo, S. Park, H.J. Song, D.H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, K. Kim, Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012)

    Article  ADS  Google Scholar 

  36. S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Ostling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, A graphene-based hot electron transistor. Nano Lett. 13, 1435–1439 (2013)

    Article  ADS  Google Scholar 

  37. C.M. Torres, Y.W. Lan, C. Zeng, J.H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J.R. Adleman, M.B. Lerner, Y.L. Zhong, L.J. Li, C.D. Chen, K.L. Wang, High-current gain two-dimensional MoS2 -base hot-electron transistors. Nano Lett. 15, 7905–7912 (2015)

    Article  ADS  Google Scholar 

  38. G. Fisichella, G. Greco, F. Roccaforte, F. Giannazzo, Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale. Nanoscale 6, 8671–8680 (2014)

    Article  ADS  Google Scholar 

  39. F. Giannazzo, G. Fisichella, G. Greco, A. La Magna, F. Roccaforte, B. Pecz, R. Yakimova, R. Dagher, A. Michon, Y. Cordier, Graphene integration with nitride semiconductors for high power and high frequency electronics. Phys. Status Solidi A 214, 1600460 (2017)

    Article  ADS  Google Scholar 

  40. F. Giannazzo, G. Fisichella, G. Greco, E. Schilirò, I. Deretzis, R. Lo Nigro, A. La Magna, F. Roccaforte, F. Iucolano, S. Lo Verso, S. Ravesi, P. Prystawko, P. Kruszewski, M. Leszczyński, R. Dagher, E. Frayssinet, A. Michon, Y. Cordier, Fabrication and characterization of graphene heterostructures with nitride semiconductors for high frequency vertical transistors. Phys. Status Solidi A 215, 1700653 (2018)

    Article  ADS  Google Scholar 

  41. A. Zubair, A. Nourbakhsh, J.-Y. Hong, M. Qi, Y. Song, D. Jena, J. Kong, M. Dresselhaus, T. Palacios, Hot electron transistor with van der Waals base-collector heterojunction and high-performance GaN emitter. Nano Lett. 17, 3089–3096 (2017)

    Article  ADS  Google Scholar 

  42. F. Giannazzo, P. Fiorenza, V. Raineri, Carrier transport in advanced semiconductor materials, in Applied Scanning Probe Methods, ed. by B. Bhushan, H. Fuchs, M. Tomitori vol 8–10 (Springer, Heidelberg, 2008)

    Google Scholar 

  43. F. Giannazzo, V. Raineri, E. Rimini, Transport properties of graphene with nanoscale lateral resolution, in Scanning Probe Microscopy in Nanoscience and Nanotechnology 2, ed. by B. Bhushan (Springer Berlin Heidelberg, 2011)

    Google Scholar 

  44. F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Irradiation damage in graphene on SiO2 probed by local mobility measurements. Appl. Phys. Lett. 95, 263109 (2009)

    Article  ADS  Google Scholar 

  45. F. Giannazzo, S. Sonde, V. Raineri, E. Rimini, Screening length and quantum capacitance in graphene by scanning probe microscopy. Nano Lett. 9, 23 (2009)

    Article  ADS  Google Scholar 

  46. J. Eriksson, R. Pearce, T. Iakimov, C. Virojanadara, D. Gogova, M. Andersson, M. Syväjärvi, A. Lloyd Spetz, R. Yakimova, The influence of substrate morphology on thickness uniformity and unintentional doping of epitaxial graphene on SiC. Appl. Phys. Lett. 100, 241607 (2012)

    Article  ADS  Google Scholar 

  47. F. Giannazzo, G. Fisichella, G. Greco, P. Fiorenza, F. Roccaforte, in Conductive Atomic Force Microscopy: Applications in Nanomaterials, ed. by M. Lanza (WILEY-VCH Verlag, Weinheim 2017), Ch. 7, pp. 163–186. ISBN: 978-3-527-34091-0

    Google Scholar 

  48. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, M.I. Katsnelson, L. Eaves, S.V. Morozov, A.S. Mayorov, N.M.R. Peres, A.H.C. Neto, J. Leist, A.K. Geim, L.A. Ponomarenko, K.S. Novoselov, Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012)

    Article  ADS  Google Scholar 

  49. G.H. Lee, Y.J. Yu, C.G. Lee, C. Dean, K.L. Shepard, P. Kim, J. Hone, Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011)

    Article  ADS  Google Scholar 

  50. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. De Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  Google Scholar 

  51. C. Virojanadara, M. Syvajarvi, R. Yakimova, L.I. Johansson, A.A. Zakharov, T. Balasubramanian, Homogeneous large-area graphene layer growth on 6H-SiC(0001). Phys. Rev. B 78, 245403 (2008)

    Article  ADS  Google Scholar 

  52. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, Th Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009)

    Article  ADS  Google Scholar 

  53. C. Vecchio, S. Sonde, C. Bongiorno, M. Rambach, R. Yakimova, E. Rimini, V. Raineri, F. Giannazzo, Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Res. Lett. 6, 269 (2011)

    Article  ADS  Google Scholar 

  54. K.V. Emtsev, F. Speck, Th Seyller, L. Ley, J.D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008)

    Article  ADS  Google Scholar 

  55. G. Nicotra, I. Deretzis, M. Scuderi, C. Spinella, P. Longo, R. Yakimova, F. Giannazzo, A. La Magna, Interface disorder probed at the atomic scale for graphene grown on the C face of SiC. Phys. Rev. B 91, 155411 (2015)

    Article  ADS  Google Scholar 

  56. C. Bouhafs, A.A. Zakharov, I.G. Ivanov, F. Giannazzo, J. Eriksson, V. Stanishev, P. Kühne, T. Iakimov, T. Hofmann, M. Schubert et al., Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC. Carbon 116, 722–732 (2017)

    Article  Google Scholar 

  57. M. Ostler, I. Deretzis, S. Mammadov, F. Giannazzo, G. Nicotra, C. Spinella, Th Seyller, A. La Magna, Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Phys. Rev. B 88, 085408 (2013)

    Article  ADS  Google Scholar 

  58. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E.H. Conrad, L. Magaud, Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. Phys. Rev. Lett. 99, 126805 (2007)

    Google Scholar 

  59. S. Sonde, F. Giannazzo, V. Raineri, R. Yakimova, J.-R. Huntzinger, A. Tiberj, J. Camassel, Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy. Phys. Rev. B 80, 241406(R) (2009)

    Article  ADS  Google Scholar 

  60. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Quasi-free-standing epitaxial graphene on sic obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009)

    Article  ADS  Google Scholar 

  61. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  ADS  Google Scholar 

  62. G. Lupina, J. Kitzmann, I. Costina, M. Lukosius, C. Wenger, A. Wolff, S. Vaziri, M. Östling, I. Pasternak, A. Krajewska, W. Strupinski, S. Kataria, A. Gahoi, M.C. Lemme, G. Ruhl, G. Zoth, O. Luxenhofer, W. Mehr, Residual metallic contamination of transferred chemical vapor deposited graphene. ACS Nano 9, 4776–4785 (2015)

    Article  Google Scholar 

  63. G. Fisichella, S. Di Franco, F. Roccaforte, S. Ravesi, F. Giannazzo, Microscopic mechanisms of graphene electrolytic delamination from metal substrates. Appl. Phys. Lett. 104, 233105 (2014)

    Article  ADS  Google Scholar 

  64. H.H. Kim, S.K. Lee, S.G. Lee, E. Lee, K. Cho, Wetting-assisted crack- and wrinkle-free transfer of wafer-scale graphene onto arbitrary substrates over a wide range of surface energies. Adv. Funct. Mater. 26, 2070–2077 (2016)

    Article  Google Scholar 

  65. J.-Y. Hong, Y.C. Shin, A. Zubair, Y. Mao, T. Palacios, M.S. Dresselhaus, S.H. Kim, J. Kong, A rational strategy for graphene transfer on substrates with rough features. Adv. Mater. 28, 2382–2392 (2016)

    Article  Google Scholar 

  66. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 Films. Sci. Rep. 3, 1866 (2013)

    Article  ADS  Google Scholar 

  67. Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, C.-W. Chu, L.-J. Li, Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637–6641 (2012)

    Article  ADS  Google Scholar 

  68. Y. Zhan, Z. Liu, S. Najmaei, P. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2014)

    Article  Google Scholar 

  69. I. Song, C. Park, M. Hong, J. Baik, H.-J. Shin, H. Choi, Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem. Int. Ed. 53, 1266–1269 (2014)

    Article  Google Scholar 

  70. C. Ahn, J. Lee, H.-U. Kim, H. Bark, M. Jeon, G. Ryu, Z. Lee, G. Yeom, K. Kim, J. Jung, Y. Kim, C. Lee, T. Kim, Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 27, 5223–5229 (2015)

    Article  Google Scholar 

  71. K. Kang, S. Xie, L. Huang, Y. Han, P. Huang, K. Mak, C.-J. Kim, D. Muller, J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015)

    Article  ADS  Google Scholar 

  72. A. Valdivia, D. Tweet, J. Conley Jr., Atomic layer deposition of two dimensional MoS2 on 150 mm substrates. J. Vac. Sci. Technol. A 34, 021515 (2016)

    Article  Google Scholar 

  73. P. Sutter, J. Lahiri, P. Zahl, B. Wang, E. Sutter, Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett. 13, 276–281 (2013)

    Article  ADS  Google Scholar 

  74. S. Nakhaie, J.M. Wofford, T. Schumann, U. Jahn, M. Ramsteiner, M. Hanke, J.M.J. Lopes, H. Riechert, Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy. Appl. Phys. Lett. 106, 213108 (2015)

    Article  ADS  Google Scholar 

  75. A.T. Barton, R. Yue, S. Anwar, H. Zhu, X. Peng, S. McDonnell, N. Lu, R. Addou, L. Colombo, M.J. Kim, R.M. Wallace, C.L. Hinkle, Transition metal dichalcogenide and hexagonal boron nitride heterostructures grown by molecular beam epitaxy. Microelectron. Eng. 147, 306–309 (2015)

    Article  Google Scholar 

  76. Y.M. Shi, C. Hamsen, X.T. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.Y. Juang, M.S. Dresselhaus, L.J. Li, J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010)

    Article  ADS  Google Scholar 

  77. K.K. Kim, A. Hsu, X.T. Jia, S.M. Kim, Y.M. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161–166 (2012)

    Article  ADS  Google Scholar 

  78. A. Ismach, H. Chou, D.A. Ferrer, Y.P. Wu, S. McDonnell, H.C. Floresca, A. Covacevich, C. Pope, R. Piner, M.J. Kim, R.M. Wallace, L.G. Colombo, R.S. Ruoff, Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 6, 6378–6385 (2012)

    Article  Google Scholar 

  79. Y.Y. Liu, X.L. Zou, B.I. Yakobson, Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 6, 7053–7058 (2012)

    Article  Google Scholar 

  80. A.L. Gibb, N. Alem, J.H. Chen, K.J. Erickson, J. Ciston, A. Gautam, M. Linck, A. Zettl, Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride. J. Am. Chem. Soc. 135, 6758–6761 (2013)

    Article  Google Scholar 

  81. Q.C. Li, X.L. Zou, M.X. Liu, J.Y. Sun, Y.B. Gao, Y. Qi, X.B. Zhou, B.I. Yakobson, Y.F. Zhang, Z.F. Liu, Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111). Nano Lett. 15, 5804–5810 (2015)

    Article  ADS  Google Scholar 

  82. G.Y. Lu, T.R. Wu, Q.H. Yuan, H.S. Wang, H.M. Wang, F. Ding, X.M. Xie, M.H. Jiang, Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat. Commun. 6, 6160 (2015)

    Article  ADS  Google Scholar 

  83. F. Hui, C. Pan, Y. Ji, Y. Shi, M. Lanza, On the use of two dimensional hexagonal boron nitride as dielectric. Microelectron. Eng. 163, 119–133 (2016)

    Article  Google Scholar 

  84. M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, A graphene field-effect device. IEEE Electron Device Lett. 28, 282–284 (2007)

    Article  ADS  Google Scholar 

  85. I. Meric, N. Baklitskaya, P. Kim, K.L Shepard, RF performance of to p-gated, zero-bandgap graphene field-effect transistors. Technical Digest IEDM (2008), pp. 1–4

    Google Scholar 

  86. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  87. Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu, A.A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, Y.-M. Lin, State-of-the-art graphene high-frequency electronics. Nano Lett. 12, 3062–3067 (2012)

    Article  ADS  Google Scholar 

  88. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS 109, 11588–11592 (2012)

    Article  ADS  Google Scholar 

  89. N. Petrone, I. Meric, J. Hone, K.L. Shepard, Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121–125 (2013)

    Article  ADS  Google Scholar 

  90. W. Wei, E. Pallecchi, S. Haque, S. Borini, V. Avramovic, A. Centeno, A. Zurutuza, H. Happy, Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale 8, 14097 (2016)

    Article  ADS  Google Scholar 

  91. K. Alam, R. Lake, Monolayer MoS2 transistors beyond the technology road map. IEEE Trans. Electron Dev. 59, 3250–3254 (2012)

    Article  ADS  Google Scholar 

  92. L. Liu, Y. Lu, J. Guo, On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans. Electron Dev. 60, 4133–4139 (2013)

    Article  ADS  Google Scholar 

  93. K. Majumdar, C. Hobbs, P.D. Kirsch, Benchmarking transition metal dichalcogenide MOSFET in the ultimate physical scaling limit. IEEE Electron Dev. Lett. 35, 402–404 (2014)

    Article  ADS  Google Scholar 

  94. International Technology Roadmap for Semiconductors (ITRS, 2012); http://www.itrs.net/

  95. S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang, G.H. Ahn, G. Pitner, M.J. Kim, J. Bokor, C. Hu, H.-S.P. Wong, A. Javey, MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016)

    Article  ADS  Google Scholar 

  96. J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, Z. Zhang, Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015)

    Article  ADS  Google Scholar 

  97. Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y.W. Zhang, Y. Shi, X. Wang, Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 5, 5290 (2014)

    Article  ADS  Google Scholar 

  98. Y. Guo, D. Liu, J. Robertson, Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts. Appl. Phys. Lett. 106, 173106 (2015)

    Article  ADS  Google Scholar 

  99. R. Addou, S. McDonnell, D. Barrera, Z. Guo, A. Azcatl, J. Wang, H. Zhu, C.L. Hinkle, M. Quevedo-Lopez, H.N. Alshareef, L. Colombo, J.W.P. Hsu, R.M. Wallace, Impurities and electronic property variations of natural MoS2 crystal surfaces. ACS Nano 9, 9124–9133 (2015)

    Article  Google Scholar 

  100. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multi-layer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013)

    Article  ADS  Google Scholar 

  101. R. Kappera, D. Voiry, S.E. Yalcin, B. Branch, G. Gupta, A.D. Mohite, M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014)

    Article  ADS  Google Scholar 

  102. J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H.J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, J. Wu, Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14, 6976–6982 (2014)

    Article  ADS  Google Scholar 

  103. H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, A. Javey, Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991–1995 (2013)

    Article  ADS  Google Scholar 

  104. A. Nipane, D. Karmakar, N. Kaushik, S. Karande, S. Lodha, Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 10, 2128–2137 (2016)

    Article  Google Scholar 

  105. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 4, 2642 (2013)

    Article  ADS  Google Scholar 

  106. S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, Defect-dominated doping and contact resistance in MoS2. ACS Nano 8, 2880–2888 (2014)

    Article  Google Scholar 

  107. S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J.S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R.M. Wallace, A. Javey, MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014)

    Article  ADS  Google Scholar 

  108. F. Giannazzo, G. Fisichella, G. Greco, S. Di Franco, I. Deretzis, A. La Magna, C. Bongiorno, G. Nicotra, C. Spinella, M. Scopelliti, B. Pignataro, S. Agnello, F. Roccaforte, Ambipolar MoS2 transistors by nanoscale tailoring of Schottky Barrier using oxygen plasma functionalization. ACS Appl. Mater. Interfaces. 9, 23164 (2017)

    Article  Google Scholar 

  109. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.-J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013)

    Article  ADS  Google Scholar 

  110. D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P.M. Ajayan, K. Banerjee, A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015)

    Article  ADS  Google Scholar 

  111. T. Roy, M. Tosun, X. Cao, H. Fang, D.-H. Lien, P. Zhao, Y.-Z. Chen, Y.-L. Chueh, J. Guo, A. Javey, Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015)

    Article  Google Scholar 

  112. D. Jariwala, T.J. Marks, M.C. Hersam, Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017)

    Article  ADS  Google Scholar 

  113. C. Zeng, E.B. Song, M. Wang, S. Lee, C.M. Torres, J. Tang, B.H. Weiller, K.L. Wang, Vertical graphene-base hot electron transistor. Nano Lett. 13, 2370 (2013)

    Article  ADS  Google Scholar 

  114. S. Hertel, D. Waldmann, J. Jobst, A. Albert, M. Albrecht, S. Reshanov, A. Schöner, M. Krieger, H.B. Weber, Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics. Nat. Commun. 3, 957 (2012)

    Article  ADS  Google Scholar 

  115. S. Hertel, M. Krieger, H.B. Weber, Monolithic circuits with epitaxial graphene/silicon carbide transistors. Phys. Status Solidi RRL 8, 688–691 (2014)

    Article  Google Scholar 

  116. B. Vasic, A. Zurutuza, R. Gajic, Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon 102, 304–310 (2016)

    Article  Google Scholar 

  117. M. Ahmad, H. An, Y.S. Kim, J.H. Lee, J. Jung, S.-H. Chun, Y. Seo, Nanoscale investigation of charge transport at the grain boundaries and wrinkles in graphene film. Nanotechnology 23, 285705 (2012)

    Article  ADS  Google Scholar 

  118. L. Tapaszto, P. Nemes-Incze, G. Dobrik, K. Jae Yoo, C. Hwang, L. Biro, Mapping the electronic properties of individual graphene grain boundaries. Appl. Phys. Lett. 100, 053114 (2012)

    Article  ADS  Google Scholar 

  119. J.C. Koepke, J.D. Wood, D. Estrada, Z.-Y. Ong, K.T. He, E. Pop et al., Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: a scanning tunneling microscopy study. Nano Lett. 7, 75–86 (2013)

    Google Scholar 

  120. B. Nikolic, P.B. Allen, Electron transport through a circular constriction. Phys. Rev. B 60, 3963–3969 (1999)

    Article  ADS  Google Scholar 

  121. M.I. Katsnelson, A.K. Geim, Electron scattering on microscopic corrugations in graphene. Philos. T. Roy. Soc. A 366, 195–204 (2008)

    Article  ADS  Google Scholar 

  122. G. Nicotra, Q.M. Ramasse, I. Deretzis, A. La Magna, C. Spinella, F. Giannazzo, Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy. ACS Nano 7, 3045–3052 (2013)

    Article  Google Scholar 

  123. F. Giannazzo, I. Deretzis, G. Nicotra, G. Fisichella, Q.M. Ramasse, C. Spinella, F. Roccaforte, A. La Magna, High resolution study of structural and electronic properties of epitaxial graphene grown on off-axis 4H-SiC (0001). J. Cryst. Growth 393, 150–155 (2014)

    Article  ADS  Google Scholar 

  124. F. Giannazzo, I. Deretzis, A. La Magna, F. Roccaforte, R. Yakimova, Electronic transport at monolayer-bilayer junctions in epitaxial graphene on SiC. Phys. Rev. B 86, 235422 (2012)

    Article  ADS  Google Scholar 

  125. M. Nagase, H. Hibino, H. Kageshima, H. Yamaguchi, Local conductance measurements of double-layer graphene on SiC substrate. Nanotechnology 20, 445704 (2009)

    Article  ADS  Google Scholar 

  126. F. Giannazzo, G. Fisichella, A. Piazza, S. Agnello, F. Roccaforte, Nanoscale inhomogeneity of the Schottky barrier and resistivity in MoS2 multilayers. Phys. Rev. B 92, 081307(R) (2015)

    Article  ADS  Google Scholar 

  127. F. Giannazzo, S. Hertel, A. Albert, A. La Magna, F. Roccaforte, M. Krieger, H.B. Weber, Electrical nanocharacterization of epitaxial graphene/silicon carbide Schottky contacts. Mater. Sci. Forum 778–780, 1142–1145 (2014)

    Article  Google Scholar 

  128. F. Giannazzo, S. Hertel, A. Albert, G. Fisichella, A. La Magna, F. Roccaforte, M. Krieger, H.B. Weber, Electrical properties of the hydrogen intercalated epitaxial graphene/SiC interface investigated by nanoscale current mapping. Mater. Sci. Forum 821–823, 929–932 (2015)

    Article  Google Scholar 

  129. J. Ristein, S. Mammadov, Th Seyller, Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 108, 246104 (2012)

    Article  ADS  Google Scholar 

  130. Y.-C. Lin, R.K. Ghosh, R. Addou, N. Lu, S.M. Eichfeld, H. Zhu, M.-Y. Li, X. Peng, M.J. Kim, L.-J. Li, R.M. Wallace, S. Datta, J.A. Robinson, Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Communications 6, 7311 (2015)

    Article  ADS  Google Scholar 

  131. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76, 73103 (2007)

    Article  ADS  Google Scholar 

  132. D.B. Farmer, H.Y. Chiu, Y.M. Lin, K.A. Jenkins, F. Xia, P. Avouris, Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009)

    Article  ADS  Google Scholar 

  133. S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, S.K. Banerjee, Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94, 062107 (2009)

    Article  ADS  Google Scholar 

  134. I. Meric, C.R. Dean, A.F. Young, N. Baklitskaya, N.J. Tremblay, C. Nuckolls, P. Kim, K.L. Shepard, Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements. Nano Lett. 11, 1093–1097 (2011)

    Article  ADS  Google Scholar 

  135. S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C.L. Hinkle, M.J. Kim, R.M. Wallace, HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013)

    Article  Google Scholar 

  136. L. Lindsay, D.A. Broido, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 155421 (2011)

    Google Scholar 

  137. Y.F. Ji, C.B. Pan, M.Y. Zhang, S.B. Long, X.J. Lian, F. Miao, F. Hui, Y.Y. Shi, L. Larcher, E. Wu, M. Lanza, Boron nitride as two dimensional dielectric: reliability and dielectric breakdown. Appl. Phys. Lett. 108, 012905 (2016)

    Article  ADS  Google Scholar 

  138. C. Pan, Y. Ji, N. Xiao, F. Hui, K. Tang, Y. Guo, X. Xie, F.M. Puglisi, L. Larcher, E. Miranda, L. Jiang, Y. Shi, I. Valov, P.C. McIntyre, R. Waser, M. Lanza, Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27, 1604811 (2017)

    Article  Google Scholar 

  139. F. Hui, W. Fang, W.S. Leong, T. Kpulun, H. Wang, H.Y. Yang, M.A. Villena, G. Harris, J. Kong, M. Lanza, Electrical homogeneity of large-area chemical vapor deposited multilayer hexagonal boron nitride sheets. ACS Appl. Mater. Interfaces. 9, 39895–39900 (2017)

    Article  Google Scholar 

  140. C.H. Ho, S.Y. Kim, K. Roy, Ultra-thin dielectric breakdown in devices and circuits: a brief review. Microelectron. Reliab. 55, 308–317 (2015)

    Article  Google Scholar 

  141. R. Degraeve, B. Kaczer, G. Groeseneken, Degradation and breakdown in thin oxide layers: mechanisms, models and reliability prediction. Microelectron. Reliab. 39, 1445–1460 (1999)

    Article  Google Scholar 

  142. D.J. Dimaria, E. Cartier, Mechanism for stress-induced leakage currents in thin silicon dioxide films. J. Appl. Phys. 78, 3883–3894 (1995)

    Article  ADS  Google Scholar 

  143. L. Vandelli, A. Padovani, L. Larcher, G. Bersuker, Microscopic modeling of electrical stress-induced breakdown in poly-crystalline hafnium oxide dielectrics. IEEE Trans. Electron Devices 60, 1754–1762 (2013)

    Article  ADS  Google Scholar 

  144. E. Miranda, J. Sune, R. Rodriguez, M. Nafria, X. Aymerich, Soft breakdown fluctuation events in ultrathin SiO2 layers. Appl. Phys. Lett. 73, 490–492 (1998)

    Article  ADS  Google Scholar 

  145. Y. Hattori, T. Taniguchi, K. Watanabe, K. Nagashio, Anisotropic dielectric breakdown strength of single crystal hexagonal boron nitride. ACS Appl. Mater. Interfaces 8, 27877–27884 (2016)

    Article  Google Scholar 

  146. L. Aguilera, M. Porti, M. Nafria, X. Aymerich, Charge trapping and degradation of HfO2/SiO2/ MOS gate stacks observed with enhanced CAFM. IEEE Electron Device Lett. 27, 157–159 (2006)

    Article  ADS  Google Scholar 

  147. M. Lanza, M. Porti, M. Nafría, X. Aymerich, E. Whittaker, B. Hamilton, UHV CAFM characterization of high-k dielectrics: effect of the technique resolution on the pre- and post-breakdown electrical measurements. Microelectron. Reliab. 50, 1312–1315 (2010)

    Article  Google Scholar 

  148. F. Palumbo, X. Liang, B. Yuan, Y. Shi, F. Hui, M.A. Villena, M. Lanza, Bimodal dielectric breakdown in electronic devices using chemical vapor deposited hexagonal boron nitride as dielectric. Adv. Electron. Mater. 4, 1700506 (2018)

    Article  Google Scholar 

  149. A. Ranjan, F.M. Puglisi, N. Raghavan, S.J. O’Shea, K. Shubhakar, P. Pavan, A. Padovani, L. Larcher, K.L. Pey, Random telegraph noise in 2D hexagonal boron nitride dielectric films. Appl. Phys. Lett. 112, 133505 (2018)

    Article  ADS  Google Scholar 

  150. L. Jiang, Y. Shi, F. Hui, K. Tang, Q. Wu, C. Pan, X. Jing, H. Uppal, F. Palumbo, G. Lu, T. Wu, H. Wang, M.A. Villena, X. Xie, P.C. McIntyre, M. Lanza, Dielectric breakdown in chemical vapor deposited hexagonal boron nitride. ACS Appl. Mater. Interfaces 9, 39758–39770 (2017)

    Article  Google Scholar 

  151. F.M. Puglisi, L. Larcher, C. Pan, N. Xiao, Y. Shi, F. Hui, M. Lanza, 2D h-BN based RRAM devices. Int. Electron Devices Meeting (IEDM) Tech. Dig., 34.8.1–38.8.4 (2016)

    Google Scholar 

  152. C. Pan, E. Miranda, M.A. Villena, N. Xiao, X. Jing, X. Xie, T. Wu, F. Hui, Y. Shi, M. Lanza, Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices. 2D Mater. 4, 025099 (2017)

    Article  Google Scholar 

  153. F. Hui, M.A Villena, W. Fang, A.-Yu Lu, J. Kong, Y. Shi, X. Jing, K. Zhu, M. Lanza, Synthesis of large-area multilayer hexagonal boron nitride sheets on iron substrates and its use in resistive switching devices. 2D Mater. (2018). https://doi.org/10.1088/2053-1583/aac615

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge these colleagues for useful discussions: E. Schilirò, S. Di Franco, P. Fiorenza, R. Lo Nigro, I. Deretzis, A. La Magna, G. Nicotra, (CNR-IMM, Catania, Italy). This work has been supported, in part, by the Flag-ERA project “GraNitE: Graphene heterostructures with Nitrides for high frequency Electronics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Giannazzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giannazzo, F., Greco, G., Roccaforte, F., Mahata, C., Lanza, M. (2019). Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics. In: Celano, U. (eds) Electrical Atomic Force Microscopy for Nanoelectronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-15612-1_10

Download citation

Publish with us

Policies and ethics