Skip to main content

The Atomic Force Microscopy for Nanoelectronics

  • Chapter
  • First Online:
Electrical Atomic Force Microscopy for Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The invention of scanning tunneling microscopy (STM), rapidly followed by atomic force microscopy (AFM), occurred at the time when extensive research on sub-µm metal oxide field-effect transistors (MOSFET) was beginning. Apparently uncorrelated, these events have positively influenced one another. In fact, ultra-scaled semiconductor devices required nanometer control of the surface quality, and the newborn microscopy techniques provided unprecedented sensing capability at the atomic scale. This alliance opened new horizons for materials characterization and continues to this day, with AFM representing one of the most popular analysis techniques in nanoelectronics. This book discusses how the introduction of new devices benefited from AFM, while driving the analysis and sensing capabilities in novel directions. Here, the goal is to introduce the major electrical AFM methods, going through the journey that has seen our life changed by the advent of ubiquitous nanoelectronics devices, and has extended our capability to sense matter on a scale previously inaccessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Article  ADS  Google Scholar 

  2. Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope–force mapping and profiling on a sub 100-Å scale. J. Appl. Phys. 61, 4723–4729 (1987)

    Article  ADS  Google Scholar 

  3. G.M. McClelland, R. Erlandsson, S. Chiang, Review of progress in quantitative non-destructive evaluation. Rev. Prog. Quant. Non-Destructive Eval. 6 B, 1307–1314 (1987)

    Article  Google Scholar 

  4. G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988)

    Article  ADS  Google Scholar 

  5. F.J. Giessibl, Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  ADS  Google Scholar 

  6. G. Binnig, R. Heinrich, W. Pauli, The scanning tunneling microscope. Sci. Am. 253, 50–56 (1985)

    Article  Google Scholar 

  7. B. Voigtlaender, Scanning Probe Microscopy (Springer, Berlin, 2015)

    Google Scholar 

  8. P. Eaton, P. West, Atomic Force Microscopy (Oxford University Press, Oxford, 2010)

    Google Scholar 

  9. S.K. Kulkarni, Nanotechnology : Principles and Practices (Springer, Berlin, 2014)

    Google Scholar 

  10. G. Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications (Wiley, New York, 2012)

    Google Scholar 

  11. A. Foster, W.A. Hofer, Scanning Probe Microscopy (2006). https://doi.org/10.1007/0-387-37231-8

    Book  Google Scholar 

  12. G. Binnig, H. Rohrer, In touch with atoms. Rev. Mod. Phys. 71, S324–S330 (1999)

    Article  Google Scholar 

  13. O. Custance, R. Perez, S. Morita, Atomic force microscopy as a tool for atom manipulation. Nat. Nanotechnol. 4, 803–810 (2009)

    Article  ADS  Google Scholar 

  14. J.Y. Park, S. Maier, B. Hendriksen, M. Salmeron, Sensing current and forces with SPM. Mater. Today 13, 38–45 (2010)

    Article  Google Scholar 

  15. S. Salahuddin, K. Ni, S. Datta, The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018)

    Article  Google Scholar 

  16. N.G. Orji et al., Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018)

    Article  Google Scholar 

  17. For Fig. 1 the author acknowledges various sources including reprints from [U. Dürig, D.W. Pohl, F. Rohner, J. Appl. Phys. 59, 10] and, [R.C. Reddick, R.J. Warmack, D.W. Chilcott et al., Rev. Sci. Instrum. 61, 12] and, [Meyer, G. & Amer, N. M, Appl. Phys. Lett. 53, 1045] and [P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin et al., Nat. Nanotechnol. 7, 5]. In addition, web galleries including, R. Feenstra, Physics Dept. at Carnegie Mellon, Renishaw TERS examples (https://www.renishaw.com/en/carbon-2d-materials-and-nanotechnology–8269), Chipworks (h), and cntech (https://www.cntech.co.uk/contacts/)

  18. Y. Martin, D.W. Abraham, H.K. Wickramasinghe, High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988)

    Article  ADS  Google Scholar 

  19. H.J. Mamin, D. Rugar, J.E. Stern, B.D. Terris, S.E. Lambert, Force microscopy of magnetization patterns in longitudinal recording media. Appl. Phys. Lett. 53, 1563–1565 (1988)

    Article  ADS  Google Scholar 

  20. S. Xu, M.F. Arnsdorf, Electrostatic force microscope for probing surface charges in aqueous solutions. Proc. Natl. Acad. Sci. 92, 10384–10388 (1995)

    Article  ADS  Google Scholar 

  21. M. Nonnenmacher, M. O’Boyle, H.K. Wickramasinghe, Surface investigations with a Kelvin probe force microscope. Ultramicroscopy 42–44, 268–273 (1992)

    Article  Google Scholar 

  22. Hartmann, U. Magnetic force microscopy. Annu. Rev. Mater. Sci. 29, 53–87 (1999)

    Article  ADS  Google Scholar 

  23. W. Melitz, J. Shen, A.C. Kummel, S. Lee, Kelvin probe force microscopy and its application. Surf. Sci. Rep. 66, 1–27 (2011)

    Article  ADS  Google Scholar 

  24. X. Li et al., Quantitatively probing the magnetic behavior of individual nanoparticles by an AC field-modulated magnetic force microscopy. Sci. Rep. 6, 22467 (2016)

    Article  ADS  Google Scholar 

  25. W. Vandervorst, M. Meuris, Method for resistance measurements on a semiconductor element with controlled probe pressure, US5369372A (1994)

    Google Scholar 

  26. J.R. Matey, J. Blanc, Scanning capacitance microscopy. J. Appl. Phys. 57, 1437–1444 (1985)

    Article  ADS  Google Scholar 

  27. A. Schulze, R. Cao, P. Eyben, T. Hantschel, W. Vandervorst, Outwitting the series resistance in scanning spreading resistance microscopy. Ultramicroscopy 161, 59–65 (2016)

    Article  Google Scholar 

  28. P. Eyben, P. Bisiaux, A. Schulze, A. Nazir, W. Vandervorst, Fast Fourier transform scanning spreading resistance microscopy: a novel technique to overcome the limitations of classical conductive AFM techniques. Nanotechnology 26, 355702 (2015)

    Article  Google Scholar 

  29. R. Shao, S.V. Kalinin, D.A. Bonnell, Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy. Appl. Phys. Lett. 82, 1869–1871 (2003)

    Article  ADS  Google Scholar 

  30. O. Amster et al., Practical quantitative scanning microwave impedance microscopy of semiconductor devices, in 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) 1–4 (IEEE, New York, 2017). https://doi.org/10.1109/ipfa.2017.8060202

  31. Conductive Atomic Force Microscopy: Applications in Nanomaterials (Wiley-VCH Verlag GmbH & Co. KGaA, 2017). https://doi.org/10.1002/9783527699773

    Google Scholar 

  32. M.P. Murrell et al., Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy. Appl. Phys. Lett. 62, 786 (1993)

    Article  ADS  Google Scholar 

  33. P. Güthner, K. Dransfeld, Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61, 1137–1139 (1992)

    Article  ADS  Google Scholar 

  34. C. Barth, C.R. Henry, Related content: Scanning force microscopy studies of domain structure in BaTiO3 single crystals (microscopy study) (1997)

    Google Scholar 

  35. S. Jesse, S.V. Kalinin, Band excitation in scanning probe microscopy: sines of change. J. Phys. D Appl. Phys. 44, 464006 (2011)

    Article  ADS  Google Scholar 

  36. S. Gomès, A. Assy, P.-O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi 212, 477–494 (2015)

    Article  ADS  Google Scholar 

  37. Y. Yang, R. Huang, Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018)

    Article  Google Scholar 

  38. U. Celano et al., Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)

    Article  ADS  Google Scholar 

  39. R.B. Dinwiddie, R.J. Pylkki, P.E. West, Thermal conductivity contrast imaging with a scanning thermal microscope. Therm. Conduct. 22, 668–677 (1994)

    Google Scholar 

  40. L. Gross, Scanning probe microscopy. Nat. Chem. 3, 273–279 (2011)

    Article  Google Scholar 

  41. S.A. Mari et al., Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Proc. Natl. Acad. Sci. 108, 20802–20807 (2011)

    Article  ADS  Google Scholar 

  42. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017)

    Article  ADS  Google Scholar 

  43. A.L. Weisenhorn, P. Maivald, H.-J. Butt, P.K. Hansma, Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992)

    Article  ADS  Google Scholar 

  44. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, E. Kratschmer, Near field scanning optical microscopy (NSOM). Biophys. J. 49, 269–279 (1986)

    Article  Google Scholar 

  45. U. Dürig, D.W. Pohl, F. Rohner, Near-field optical-scanning microscopy. J. Appl. Phys. 59, 3318–3327 (1986)

    Article  ADS  Google Scholar 

  46. N.F. van Hulst, F.B. Segerink, F. Achten, B. Bölger, Evanescent-field optical microscopy: effects of polarization, tip shape and radiative waves. Ultramicroscopy 42–44, 416–421 (1992)

    Article  Google Scholar 

  47. R.C. Reddick, R.J. Warmack, D.W. Chilcott, S.L. Sharp, T.L. Ferrell, Photon scanning tunneling microscopy. Rev. Sci. Instrum. 61, 3669–3677 (1990)

    Article  ADS  Google Scholar 

  48. L. Novotny, N. Van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  49. S. Zhu, G.Q. Lo, D.L. Kwong, Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Opt. Express 20, 15232 (2012)

    Article  ADS  Google Scholar 

  50. L. Liu et al., Three-dimensional atomic force microscopy for sidewall imaging using torsional resonance mode. Scanning 2018, 1–8 (2018)

    Google Scholar 

  51. T.-G. Kim et al., In-line critical dimension and sidewall roughness metrology study for compound nanostructure process control by in-line 3D atomic force microscope. ECS Trans. 75, 761–767 (2016)

    Article  Google Scholar 

  52. Y. Liu et al., Tuning dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 10, 294–299 (2014)

    Article  Google Scholar 

  53. P. Roushan et al., Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009)

    Article  ADS  Google Scholar 

  54. Y. Dovzhenko et al., Imaging the spin texture of a skyrmion under ambient conditions using an atomic-sized sensor (2016). Available at: http://arxiv.org/abs/1611.00673

  55. P. Maletinsky et al., A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7, 320–324 (2012)

    Article  ADS  Google Scholar 

  56. F. Zenhausern, Y. Martin, H.K. Wickramasinghe, Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution. Science (80) 269, 1083–1085 (1995)

    Article  ADS  Google Scholar 

  57. F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65, 1623–1625 (1994)

    Article  ADS  Google Scholar 

  58. F. Long, B. Cao, A. Khanal, S. Fang, R. Shahbazian-Yassar, Modification of a single-molecule AFM probe with highly defined surface functionality. Beilstein J. Nanotechnol. 5, 2122–2128 (2014)

    Article  Google Scholar 

  59. T. Ando, High-speed atomic force microscopy. J. Electron. Microsc. (Tokyo) 62, 81–93 (2013)

    Article  Google Scholar 

  60. G.R. Heath, S. Scheuring, High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules. Nat. Commun. 9, 4983 (2018)

    Article  ADS  Google Scholar 

  61. S.V. Kalinin et al., Big, deep, and smart data in scanning probe microscopy. ACS Nano (2016). https://doi.org/10.1021/acsnano.6b04212

    Article  Google Scholar 

  62. X. Li et al., High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping. Nat. Commun. 9, 2428 (2018)

    Article  ADS  Google Scholar 

  63. K.-H. Chung, Wear characteristics of atomic force microscopy tips: A reivew. Int. J. Precis. Eng. Manuf. 15, 2219–2230 (2014)

    Article  Google Scholar 

  64. D. Sarid, R. Coratger, F. Ajustron, J. Beauvillain, Scanning force microscopy—with applications to electric, magnetic and atomic forces. Microsc. Microanal. Microstruct. 2, 649 (1991)

    Article  Google Scholar 

  65. R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577–587 (2014)

    Article  ADS  Google Scholar 

  66. D. Sarid, Tapping-mode scanning force microscopy: metallic tips and samples. Comput. Mater. Sci. 5 (1996)

    Article  Google Scholar 

  67. M. Stark, R.W. Stark, W.M. Heckl, R. Guckenberger, Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl. Acad. Sci. 99, 8473–8478 (2002)

    Article  ADS  Google Scholar 

  68. T.J. Young et al., The use of the PeakForce™ quantitative nanomechanical mapping AFM-based method for high-resolution Young’s modulus measurement of polymers. Meas. Sci. Technol. 22, 125703 (2011)

    Article  ADS  Google Scholar 

  69. E. Meyer, H.J. Hug, R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2003)

    Google Scholar 

  70. U. Celano, Metrology and Physical Mechanisms in New Generation Ionic Devices (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-39531-9

    Book  Google Scholar 

  71. J. Drelich, G.W. Tormoen, E.R. Beach, Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. J. Colloid Interface Sci. 280, 484–497 (2004)

    Article  ADS  Google Scholar 

  72. D.S. Grierson, E.E. Flater, R.W. Carpick, Accounting for the JKR–DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)

    Article  Google Scholar 

  73. U. Celano et al., Evaluation of the electrical contact area in contact-mode scanning probe microscopy. J. Appl. Phys. 117, 214305 (2015)

    Article  ADS  Google Scholar 

  74. C. Rodenbücher et al., Local surface conductivity of transition metal oxides mapped with true atomic resolution. Nanoscale (2018). https://doi.org/10.1039/c8nr02562b

    Article  Google Scholar 

  75. T. Hantschel et al., Conductive diamond tips with sub-nanometer electrical resolution for characterization of nanoelectronics device structures. Phys. Status Solidi 206, 2077–2081 (2009)

    Article  ADS  Google Scholar 

  76. P. Eyben et al., Subnanometer characterization of nanoelectronic devices, in Fundamentals of Picoscience, ed. by D.S. Klaus (CRC Press, Boca Raton 2013), pp. 677–704. https://doi.org/10.1201/b15523-46

    Chapter  Google Scholar 

  77. M. Enachescu, D. Schleef, D. Ogletree, M. Salmeron, Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt(111). Phys. Rev. B 60, 16913–16919 (1999)

    Article  ADS  Google Scholar 

  78. P. Eyben, T. Janssens, W. Vandervorst, Scanning spreading resistance microscopy (SSRM) 2d carrier profiling for ultra-shallow junction characterization in deep-submicron technologies. Mater. Sci. Eng., B 124–125, 45–53 (2005)

    Article  Google Scholar 

  79. K. Mylvaganam, L.C. Zhang, P. Eyben, J. Mody, W. Vandervorst, Evolution of metastable phases in silicon during nanoindentation: mechanism analysis and experimental verification. Nanotechnology 20, 305705 (2009)

    Article  Google Scholar 

  80. S. Friedman, O. Amster, Y. Yang, Recent advances in scanning Microwave Impedance Microscopy (sMIM) for nano-scale measurements and industrial applications, ed. by M.T. Postek (2014), 917308. https://doi.org/10.1117/12.2063138

  81. A. Gruverman, S.V. Kalinin, Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. Front. Ferroelectr. A Spec. Issue J. Mater. Sci. 1, 107–116 (2007)

    Article  Google Scholar 

  82. A. Kholkin, S. Kalinin, A. Roelofs, A. Gruverman, Review of ferroelectric domain imaging by piezoresponse force microscopy. Scanning Probe Microsc. Electr. Electromech. Phenom. Nanoscale 1, 173–214 (2007)

    Google Scholar 

  83. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology 18 (2007)

    Article  ADS  Google Scholar 

  84. S. Morita, F.J. Giessibl, E. Meyer, R. Wiesendanger, Noncontact Atomic Force Microscopy (2015)

    Google Scholar 

  85. P.E. Hillner, S. Manne, A.J. Gratz, P.K. Hansma, AFM images of dissolution and growth on a calcite crystal. Ultramicroscopy 42–44, 1387–1393 (1992)

    Article  Google Scholar 

  86. L. Angeloni, D. Passeri, M. Reggente, D. Mantovani, M. Rossi, Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: Application to superparamagnetic nanoparticles. Sci. Rep. 6, 1–14 (2016)

    Article  Google Scholar 

  87. S. Gómez-Moñivas, L.S. Froufe-Pérez, A.J. Caamaño, J.J. Sáenz, Electrostatic forces between sharp tips and metallic and dielectric samples. Appl. Phys. Lett. 79, 4048 (2001)

    Article  ADS  Google Scholar 

  88. L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nat. Mater. 11, 808–816 (2012)

    Article  ADS  Google Scholar 

  89. A.K. Henning et al., Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy. J. Appl. Phys. 77, 1888–1896 (1995)

    Article  ADS  Google Scholar 

  90. C. Maragliano, D. Heskes, M. Stefancich, M. Chiesa, T. Souier, Dynamic electrostatic force microscopy technique for the study of electrical properties with improved spatial resolution. Nanotechnology 24, 225703 (2013)

    Article  ADS  Google Scholar 

  91. D.A. Bonnell, J. Garra, Scanning probe microscopy of oxide surfaces: atomic structure and properties. Reports Prog. Phys. 71, 044501 (2008)

    Article  ADS  Google Scholar 

  92. A.J. Weymouth, T. Wutscher, J. Welker, T. Hofmann, F.J. Giessibl, Phantom force induced by tunneling current: a characterization on Si(111). Phys. Rev. Lett. 106, 226801 (2011)

    Article  ADS  Google Scholar 

  93. G.E. Moore, Cramming more components onto integrated circuits. Reprinted from Electronics 38(8), 114 ff. (1965, Apr 19). IEEE Solid-State Circuits Soc. Newsl. 11, 33–35 (2006)

    Google Scholar 

  94. S. Woo et al., Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016)

    Article  ADS  Google Scholar 

  95. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013)

    Article  ADS  Google Scholar 

  96. A. Hrabec et al., Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 1–6 (2017)

    Article  Google Scholar 

  97. P. Maletinsky et al., A robust, scanning quantum system for nanoscale sensing and imaging. 1–11 (2011). https://doi.org/10.1038/nnano.2012.50

    Article  ADS  Google Scholar 

  98. C. Musumeci, Advanced scanning probe microscopy of graphene and other 2D materials. Crystals 7, 216 (2017)

    Article  Google Scholar 

  99. G.X. Ni et al., Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018)

    Article  ADS  Google Scholar 

  100. G. Scappucci et al., A complete fabrication route for atomic-scale, donor-based devices in single-crystal germanium. Nano Lett. 11, 2272–2279 (2011)

    Article  ADS  Google Scholar 

  101. L. Oberbeck et al., Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy. Appl. Phys. Lett. 104, 1–6 (2014)

    Article  Google Scholar 

  102. R. Vrijen et al., Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)

    Article  ADS  Google Scholar 

  103. E. Bussmann et al., Scanning capacitance microscopy registration of buried atomic-precision donor devices. Nanotechnology 26, 085701 (2015)

    Article  ADS  Google Scholar 

  104. A. Dazzi, R. Prazeres, F. Glotin, J.M. Ortega, Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388 (2005)

    Article  ADS  Google Scholar 

  105. C. Chen, N. Hayazawa, S. Kawata, A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 1–5 (2014)

    Google Scholar 

  106. A.J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, R. Hillenbrand, Terahertz near-field nanoscopy of nanodevices. Nano Lett. 8, 3766–3770 (2008)

    Article  ADS  Google Scholar 

  107. N. Rotenberg, L. Kuipers, Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014)

    Article  ADS  Google Scholar 

  108. A. Soudi, R.D. Dawson, Y. Gu, Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano 5, 255–262 (2011)

    Article  Google Scholar 

  109. E. Yalon et al., Spatially resolved thermometry of resistive memory devices. Sci. Rep. 7, 15360 (2017)

    Article  ADS  Google Scholar 

  110. T. Ando, High-speed atomic force microscopy and its future prospects. Biophys. Rev. 10, 285–292 (2018)

    Article  Google Scholar 

  111. F. Mohn, L. Gross, N. Moll, G. Meyer, Imaging the charge distribution within a single molecule. Nat. Nanotechnol. 7, 227–231 (2012)

    Article  ADS  Google Scholar 

  112. A. Ulčinas, Vaitekonis, Rotational scanning atomic force microscopy. Nanotechnology 28 (2017)

    Article  Google Scholar 

  113. R. Garcia, E.T. Herruzo, The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012)

    Article  ADS  Google Scholar 

  114. U. Celano et al., Mesoscopic physical removal of material using sliding nano-diamond contacts. Sci. Rep. 8, 2994 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Celano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Celano, U. (2019). The Atomic Force Microscopy for Nanoelectronics. In: Celano, U. (eds) Electrical Atomic Force Microscopy for Nanoelectronics. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-15612-1_1

Download citation

Publish with us

Policies and ethics