Advertisement

Malabsorption and Malnutrition Disorders

  • Tsung-Teh WuEmail author
Chapter

Abstract

Malabsorptive disorders can be caused by a variety of diseases due to autoimmunity, infection, hypersensitivity reaction, nutritional deficiency, inherited disorders, drugs, neoplastic disorders, and systemic diseases. Celiac disease, collagenous sprue, small intestinal bacterial overgrowth syndrome, and drug-associated injuries are the common causes. These malabsorptive disorders share a spectrum of similar histological features including villous atrophy, chronic inflammation in the lamina propria, and increased intraepithelial lymphocytes on duodenal biopsies. Specific malabsorptive disorders involving lipid, carbohydrates, vitamins such as B12 and folate, zinc, proteins such as cow’s milk and soybean, and bile salt can also occur. Malabsorptive disorders due to congenital enteropathies such as tufting enteropathy and microvillous inclusion disease are rare.

Keywords

Malabsorption, Celiac disease, Refractory sprue, Collagenous sprue, Bacterial overgrowth, Lipid malabsorption, Carbohydrate malabsorption, Food intolerance, Vitamin deficiency, Congenital enteropathy 

References

  1. 1.
    Dicke WK, Weijers HA, Van De Kamer JH. Coeliac disease. II. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr. 1953;42(1):34–42.PubMedGoogle Scholar
  2. 2.
    Ensari A. Gluten-sensitive enteropathy (celiac disease): controversies in diagnosis and classification. Arch Pathol Lab Med. 2010;134(6):826–36.  https://doi.org/10.1043/1543–2165–134.6.826.CrossRefPubMedGoogle Scholar
  3. 3.
    Walker MM, Murray JA. An update in the diagnosis of coeliac disease. Histopathology. 2011;59(2):166–79.  https://doi.org/10.1111/j.1365–2559.2010.03680.x.CrossRefPubMedGoogle Scholar
  4. 4.
    Lebwohl B, Sanders DS, Green PHR. Coeliac disease. Lancet. 2017;  https://doi.org/10.1016/s0140–6736(17)31796–8.
  5. 5.
    Murray JA, Van Dyke C, Plevak MF, Dierkhising RA, Zinsmeister AR, Melton LJ 3rd. Trends in the identification and clinical features of celiac disease in a North American community, 1950–2001. Clin Gastroenterol Hepatol. 2003;1(1):19–27.  https://doi.org/10.1053/jcgh.2003.50004.CrossRefPubMedGoogle Scholar
  6. 6.
    Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, et al. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med. 2010;42(8):587–95.  https://doi.org/10.3109/07853890.2010.505931.CrossRefGoogle Scholar
  7. 7.
    Rubio-Tapia A, Ludvigsson JF, Brantner TL, Murray JA, Everhart JE. The prevalence of celiac disease in the United States. Am J Gastroenterol. 2012;107(10):1538–44; quiz 7, 45.  https://doi.org/10.1038/ajg.2012.219.CrossRefPubMedGoogle Scholar
  8. 8.
    Walker MM, Murray JA, Ronkainen J, Aro P, Storskrubb T, D’Amato M, et al. Detection of celiac disease and lymphocytic enteropathy by parallel serology and histopathology in a population-based study. Gastroenterology. 2010;139(1):112–9.  https://doi.org/10.1053/j.gastro.2010.04.007.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dube C, Rostom A, Sy R, Cranney A, Saloojee N, Garritty C, et al. The prevalence of celiac disease in average-risk and at-risk Western European populations: a systematic review. Gastroenterology. 2005;128(4 Suppl 1):S57–67.PubMedGoogle Scholar
  10. 10.
    Marild K, Stephansson O, Grahnquist L, Cnattingius S, Soderman G, Ludvigsson JF. Down syndrome is associated with elevated risk of celiac disease: a nationwide case-control study. J Pediatr. 2013;163(1):237–42.  https://doi.org/10.1016/j.jpeds.2012.12.087.CrossRefPubMedGoogle Scholar
  11. 11.
    Gillett PM, Gillett HR, Israel DM, Metzger DL, Stewart L, Chanoine JP, et al. Increased prevalence of celiac disease in girls with Turner syndrome detected using antibodies to endomysium and tissue transglutaminase. Can J Gastroenterol. 2000;14(11):915–8.PubMedGoogle Scholar
  12. 12.
    Giannotti A, Tiberio G, Castro M, Virgilii F, Colistro F, Ferretti F, et al. Coeliac disease in Williams syndrome. J Med Genet. 2001;38(11):767–8.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Rutherford RM, Brutsche MH, Kearns M, Bourke M, Stevens F, Gilmartin JJ. Prevalence of coeliac disease in patients with sarcoidosis. Eur J Gastroenterol Hepatol. 2004;16(9):911–5.PubMedGoogle Scholar
  14. 14.
    Welander A, Tjernberg AR, Montgomery SM, Ludvigsson J, Ludvigsson JF. Infectious disease and risk of later celiac disease in childhood. Pediatrics. 2010;125(3):e530–6.  https://doi.org/10.1542/peds.2009–1200.CrossRefPubMedGoogle Scholar
  15. 15.
    Riddle MS, Murray JA, Porter CK. The incidence and risk of celiac disease in a healthy US adult population. Am J Gastroenterol. 2012;107(8):1248–55.  https://doi.org/10.1038/ajg.2012.130.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sollid LM, Markussen G, Ek J, Gjerde H, Vartdal F, Thorsby E. Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp Med. 1989;169(1):345–50.PubMedGoogle Scholar
  17. 17.
    Sollid LM, Thorsby E. The primary association of celiac disease to a given HLA-DQ alpha/beta heterodimer explains the divergent HLA-DR associations observed in various Caucasian populations. Tissue Antigens. 1990;36(3):136–7.PubMedGoogle Scholar
  18. 18.
    Hadithi M, von Blomberg BM, Crusius JB, Bloemena E, Kostense PJ, Meijer JW, et al. Accuracy of serologic tests and HLA-DQ typing for diagnosing celiac disease. Ann Intern Med. 2007;147(5):294–302.Google Scholar
  19. 19.
    Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology. 2009;137(6):1912–33.  https://doi.org/10.1053/j.gastro.2009.09.008.CrossRefPubMedGoogle Scholar
  20. 20.
    Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3(7):797–801.Google Scholar
  21. 21.
    Rashtak S, Ettore MW, Homburger HA, Murray JA. Comparative usefulness of deamidated gliadin antibodies in the diagnosis of celiac disease. Clin Gastroenterol Hepatol. 2008;6(4):426–32; quiz 370.  https://doi.org/10.1016/j.cgh.2007.12.030.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sulkanen S, Halttunen T, Laurila K, Kolho KL, Korponay-Szabo IR, Sarnesto A, et al. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology. 1998;115(6):1322–8.Google Scholar
  23. 23.
    Ludvigsson JF, Leffler DA, Bai JC, Biagi F, Fasano A, Green PH, et al. The Oslo definitions for coeliac disease and related terms. Gut. 2013;62(1):43–52.  https://doi.org/10.1136/gutjnl-2011–301346.CrossRefPubMedGoogle Scholar
  24. 24.
    Grisolano SW, Oxentenko AS, Murray JA, Burgart LJ, Dierkhising RA, Alexander JA. The usefulness of routine small bowel biopsies in evaluation of iron deficiency anemia. J Clin Gastroenterol. 2004;38(9):756–60.PubMedGoogle Scholar
  25. 25.
    Dickey W. Low serum vitamin B12 is common in coeliac disease and is not due to autoimmune gastritis. Eur J Gastroenterol Hepatol. 2002;14(4):425–7.PubMedGoogle Scholar
  26. 26.
    Blazina S, Bratanic N, Campa AS, Blagus R, Orel R. Bone mineral density and importance of strict gluten-free diet in children and adolescents with celiac disease. Bone. 2010;47(3):598–603.  https://doi.org/10.1016/j.bone.2010.06.008.CrossRefGoogle Scholar
  27. 27.
    Dickey W, Hughes D. Prevalence of celiac disease and its endoscopic markers among patients having routine upper gastrointestinal endoscopy. Am J Gastroenterol. 1999;94(8):2182–6.  https://doi.org/10.1111/j.1572–0241.1999.01348.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Oxentenko AS, Grisolano SW, Murray JA, Burgart LJ, Dierkhising RA, Alexander JA. The insensitivity of endoscopic markers in celiac disease. Am J Gastroenterol. 2002;97(4):933–8.  https://doi.org/10.1111/j.1572–0241.2002.05612.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Ravelli A, Bolognini S, Gambarotti M, Villanacci V. Variability of histologic lesions in relation to biopsy site in gluten-sensitive enteropathy. Am J Gastroenterol. 2005;100(1):177–85.  https://doi.org/10.1111/j.1572–0241.2005.40669.x.CrossRefPubMedGoogle Scholar
  30. 30.
    Ravelli A, Villanacci V, Monfredini C, Martinazzi S, Grassi V, Manenti S. How patchy is patchy villous atrophy?: distribution pattern of histological lesions in the duodenum of children with celiac disease. Am J Gastroenterol. 2010;105(9):2103–10.  https://doi.org/10.1038/ajg.2010.153.CrossRefPubMedGoogle Scholar
  31. 31.
    Bonamico M, Mariani P, Thanasi E, Ferri M, Nenna R, Tiberti C, et al. Patchy villous atrophy of the duodenum in childhood celiac disease. J Pediatr Gastroenterol Nutr. 2004;38(2):204–7.PubMedGoogle Scholar
  32. 32.
    Hopper AD, Cross SS, Sanders DS. Patchy villous atrophy in adult patients with suspected gluten-sensitive enteropathy: is a multiple duodenal biopsy strategy appropriate? Endoscopy. 2008;40(3):219–24.  https://doi.org/10.1055/s-2007–995361.CrossRefPubMedGoogle Scholar
  33. 33.
    Mooney PD, Kurien M, Evans KE, Rosario E, Cross SS, Vergani P, et al. Clinical and immunologic features of ultra-short celiac disease. Gastroenterology. 2016;150(5):1125–34.  https://doi.org/10.1053/j.gastro.2016.01.029.CrossRefPubMedGoogle Scholar
  34. 34.
    Evans KE, Aziz I, Cross SS, Sahota GR, Hopper AD, Hadjivassiliou M, et al. A prospective study of duodenal bulb biopsy in newly diagnosed and established adult celiac disease. Am J Gastroenterol. 2011;106(10):1837–742.  https://doi.org/10.1038/ajg.2011.171.CrossRefPubMedGoogle Scholar
  35. 35.
    Gonzalez S, Gupta A, Cheng J, Tennyson C, Lewis SK, Bhagat G, et al. Prospective study of the role of duodenal bulb biopsies in the diagnosis of celiac disease. Gastrointest Endosc. 2010;72(4):758–65.  https://doi.org/10.1016/j.gie.2010.06.026.CrossRefPubMedGoogle Scholar
  36. 36.
    Bonamico M, Thanasi E, Mariani P, Nenna R, Luparia RP, Barbera C, et al. Duodenal bulb biopsies in celiac disease: a multicenter study. J Pediatr Gastroenterol Nutr. 2008;47(5):618–22.PubMedGoogle Scholar
  37. 37.
    Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA. American College of G. ACG clinical guidelines: diagnosis and management of celiac disease. Am J Gastroenterol. 2013;108(5):656–76; quiz 77.  https://doi.org/10.1038/ajg.2013.79.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Conrad K, Roggenbuck D, Ittenson A, Reinhold D, Buettner T, Laass MW. A new dot immunoassay for simultaneous detection of celiac specific antibodies and IgA-deficiency. Clin Chem Lab Med. 2012;50(2):337–43.  https://doi.org/10.1515/cclm.2011.760.CrossRefPubMedGoogle Scholar
  39. 39.
    Lewis NR, Scott BB. Meta-analysis: deamidated gliadin peptide antibody and tissue transglutaminase antibody compared as screening tests for coeliac disease. Aliment Pharmacol Ther. 2010;31(1):73–81.  https://doi.org/10.1111/j.1365–2036.2009.04110.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Kaukinen K, Partanen J, Maki M, Collin P. HLA-DQ typing in the diagnosis of celiac disease. Am J Gastroenterol. 2002;97(3):695–9.  https://doi.org/10.1111/j.1572–0241.2002.05471.x.CrossRefPubMedGoogle Scholar
  41. 41.
    Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr. 2012;54(1):136–60.  https://doi.org/10.1097/MPG.0b013e31821a23d0.CrossRefGoogle Scholar
  42. 42.
    Werkstetter KJ, Korponay-Szabo IR, Popp A, Villanacci V, Salemme M, Heilig G, et al. Accuracy in diagnosis of celiac disease without biopsies in clinical practice. Gastroenterology. 2017;153(4):924–35.  https://doi.org/10.1053/j.gastro.2017.06.002.CrossRefPubMedGoogle Scholar
  43. 43.
    Serra S, Jani PA. An approach to duodenal biopsies. J Clin Pathol. 2006;59(11):1133–50.  https://doi.org/10.1136/jcp.2005.031260.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Goldstein NS, Underhill J. Morphologic features suggestive of gluten sensitivity in architecturally normal duodenal biopsy specimens. Am J Clin Pathol. 2001;116(1):63–71.  https://doi.org/10.1309/5prj-cm0u-6kld-6kcm.CrossRefPubMedGoogle Scholar
  45. 45.
    Biagi F, Luinetti O, Campanella J, Klersy C, Zambelli C, Villanacci V, et al. Intraepithelial lymphocytes in the villous tip: do they indicate potential coeliac disease? J Clin Pathol. 2004;57(8):835–9.  https://doi.org/10.1136/jcp.2003.013607.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dickey W, Hughes DF. Histology of the terminal ileum in coeliac disease. Scand J Gastroenterol. 2004;39(7):665–7.  https://doi.org/10.1080/00365520410004901.CrossRefPubMedGoogle Scholar
  47. 47.
    Brown IS, Smith J, Rosty C. Gastrointestinal pathology in celiac disease: a case series of 150 consecutive newly diagnosed patients. Am J Clin Pathol. 2012;138(1):42–9.  https://doi.org/10.1309/ajcpe89zpvjtspwl.CrossRefPubMedGoogle Scholar
  48. 48.
    Hopper AD, Hurlstone DP, Leeds JS, McAlindon ME, Dube AK, Stephenson TJ, et al. The occurrence of terminal ileal histological abnormalities in patients with coeliac disease. Dig Liver Dis. 2006;38(11):815–9.  https://doi.org/10.1016/j.dld.2006.04.003.CrossRefPubMedGoogle Scholar
  49. 49.
    Marsh MN. Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology. 1992;102(1):330–54.Google Scholar
  50. 50.
    Oberhuber G, Granditsch G, Vogelsang H. The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol. 1999;11(10):1185–94.PubMedGoogle Scholar
  51. 51.
    Corazza GR, Villanacci V. Coeliac disease. J Clin Pathol. 2005;58(6):573–4.  https://doi.org/10.1136/jcp.2004.023978.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wolber R, Owen D, Freeman H. Colonic lymphocytosis in patients with celiac sprue. Hum Pathol. 1990;21(11):1092–6.PubMedGoogle Scholar
  53. 53.
    Green PH, Yang J, Cheng J, Lee AR, Harper JW, Bhagat G. An association between microscopic colitis and celiac disease. Clin Gastroenterol Hepatol. 2009;7(11):1210–6.  https://doi.org/10.1016/j.cgh.2009.07.011.CrossRefPubMedGoogle Scholar
  54. 54.
    Stewart M, Andrews CN, Urbanski S, Beck PL, Storr M. The association of coeliac disease and microscopic colitis: a large population-based study. Aliment Pharmacol Ther. 2011;33(12):1340–9.  https://doi.org/10.1111/j.1365–2036.2011.04666.x.CrossRefPubMedGoogle Scholar
  55. 55.
    Matteoni CA, Goldblum JR, Wang N, Brzezinski A, Achkar E, Soffer EE. Celiac disease is highly prevalent in lymphocytic colitis. J Clin Gastroenterol. 2001;32(3):225–7.PubMedGoogle Scholar
  56. 56.
    Vigren L, Tysk C, Strom M, Kilander AF, Hjortswang H, Bohr J, et al. Celiac disease and other autoimmune diseases in patients with collagenous colitis. Scand J Gastroenterol. 2013;48(8):944–50.  https://doi.org/10.3109/00365521.2013.805809.CrossRefPubMedGoogle Scholar
  57. 57.
    Prasad KK, Thapa BR, Lal S, Sharma AK, Nain CK, Singh K. Lymphocytic gastritis and celiac disease in indian children: evidence of a positive relation. J Pediatr Gastroenterol Nutr. 2008;47(5):568–72.PubMedGoogle Scholar
  58. 58.
    De Giacomo C, Gianatti A, Negrini R, Perotti P, Bawa P, Maggiore G, et al. Lymphocytic gastritis: a positive relationship with celiac disease. J Pediatr. 1994;124(1):57–62.PubMedGoogle Scholar
  59. 59.
    Wu TT, Hamilton SR. Lymphocytic gastritis: association with etiology and topology. Am J Surg Pathol. 1999;23(2):153–8.PubMedGoogle Scholar
  60. 60.
    Patterson ER, Shmidt E, Oxentenko AS, Enders FT, Smyrk TC. Normal villous architecture with increased intraepithelial lymphocytes: a duodenal manifestation of Crohn disease. Am J Clin Pathol. 2015;143(3):445–50.  https://doi.org/10.1309/ajcpbkqnd4shvx9q.CrossRefPubMedGoogle Scholar
  61. 61.
    Brown I, Mino-Kenudson M, Deshpande V, Lauwers GY. Intraepithelial lymphocytosis in architecturally preserved proximal small intestinal mucosa: an increasing diagnostic problem with a wide differential diagnosis. Arch Pathol Lab Med. 2006;130(7):1020–5.  https://doi.org/10.1043/1543–2165(2006)130[1020:iliapp]2.0.co;2.CrossRefPubMedGoogle Scholar
  62. 62.
    Kakar S, Nehra V, Murray JA, Dayharsh GA, Burgart LJ. Significance of intraepithelial lymphocytosis in small bowel biopsy samples with normal mucosal architecture. Am J Gastroenterol. 2003;98(9):2027–33.  https://doi.org/10.1111/j.1572–0241.2003.07631.x.CrossRefPubMedGoogle Scholar
  63. 63.
    Mino M, Lauwers GY. Role of lymphocytic immunophenotyping in the diagnosis of gluten-sensitive enteropathy with preserved villous architecture. Am J Surg Pathol. 2003;27(9):1237–42.PubMedGoogle Scholar
  64. 64.
    Memeo L, Jhang J, Hibshoosh H, Green PH, Rotterdam H, Bhagat G. Duodenal intraepithelial lymphocytosis with normal villous architecture: common occurrence in H. pylori gastritis. Mod Pathol. 2005;18(8):1134–44.  https://doi.org/10.1038/modpathol.3800404.CrossRefPubMedGoogle Scholar
  65. 65.
    Rubio-Tapia A, Murray JA. Classification and management of refractory coeliac disease. Gut. 2010;59(4):547–57.  https://doi.org/10.1136/gut.2009.195131.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Rubio-Tapia A, Herman ML, Ludvigsson JF, Kelly DG, Mangan TF, Wu TT, et al. Severe spruelike enteropathy associated with olmesartan. Mayo Clin Proc. 2012;87(8):732–8.  https://doi.org/10.1016/j.mayocp.2012.06.003.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jeffers MD, Hourihane DO. Coeliac disease with histological features of peptic duodenitis: value of assessment of intraepithelial lymphocytes. J Clin Pathol. 1993;46(5):420–4.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Brown IS, Bettington A, Bettington M, Rosty C. Self-limited coeliac-like enteropathy: a series of 18 cases highlighting another coeliac disease mimic. Histopathology. 2016;68(2):254–61.  https://doi.org/10.1111/his.12752.CrossRefPubMedGoogle Scholar
  69. 69.
    Ludvigsson JF, Bai JC, Biagi F, Card TR, Ciacci C, Ciclitira PJ, et al. Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut. 2014;63(8):1210–28.  https://doi.org/10.1136/gutjnl-2013–306578.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Leffler DA, Dennis M, Hyett B, Kelly E, Schuppan D, Kelly CP. Etiologies and predictors of diagnosis in nonresponsive celiac disease. Clin Gastroenterol Hepatol. 2007;5(4):445–50.  https://doi.org/10.1016/j.cgh.2006.12.006.CrossRefPubMedGoogle Scholar
  71. 71.
    Abdulkarim AS, Burgart LJ, See J, Murray JA. Etiology of nonresponsive celiac disease: results of a systematic approach. Am J Gastroenterol. 2002;97(8):2016–21.  https://doi.org/10.1111/j.1572–0241.2002.05917.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Roshan B, Leffler DA, Jamma S, Dennis M, Sheth S, Falchuk K, et al. The incidence and clinical spectrum of refractory celiac disease in a north american referral center. Am J Gastroenterol. 2011;106(5):923–8.  https://doi.org/10.1038/ajg.2011.104.CrossRefPubMedGoogle Scholar
  73. 73.
    Nachman F, Sugai E, Vazquez H, Gonzalez A, Andrenacci P, Niveloni S, et al. Serological tests for celiac disease as indicators of long-term compliance with the gluten-free diet. Eur J Gastroenterol Hepatol. 2011;23(6):473–80.  https://doi.org/10.1097/MEG.0b013e328346e0f1.CrossRefPubMedGoogle Scholar
  74. 74.
    Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology. 2017;153(3):689–701.e1.  https://doi.org/10.1053/j.gastro.2017.05.015.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rubio-Tapia A, Rahim MW, See JA, Lahr BD, Wu TT, Murray JA. Mucosal recovery and mortality in adults with celiac disease after treatment with a gluten-free diet. Am J Gastroenterol. 2010;105(6):1412–20.  https://doi.org/10.1038/ajg.2010.10.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lanzini A, Lanzarotto F, Villanacci V, Mora A, Bertolazzi S, Turini D, et al. Complete recovery of intestinal mucosa occurs very rarely in adult coeliac patients despite adherence to gluten-free diet. Aliment Pharmacol Ther. 2009;29(12):1299–308.  https://doi.org/10.1111/j.1365–2036.2009.03992.x.CrossRefPubMedGoogle Scholar
  77. 77.
    Wahab PJ, Meijer JW, Mulder CJ. Histologic follow-up of people with celiac disease on a gluten-free diet: slow and incomplete recovery. Am J Clin Pathol. 2002;118(3):459–63.  https://doi.org/10.1309/evxt-851x-whlc-rlx9.CrossRefPubMedGoogle Scholar
  78. 78.
    Kaukinen K, Peraaho M, Lindfors K, Partanen J, Woolley N, Pikkarainen P, et al. Persistent small bowel mucosal villous atrophy without symptoms in coeliac disease. Aliment Pharmacol Ther. 2007;25(10):1237–45.  https://doi.org/10.1111/j.1365–2036.2007.03311.x.CrossRefPubMedGoogle Scholar
  79. 79.
    Rubio-Tapia A, Kelly DG, Lahr BD, Dogan A, Wu TT, Murray JA. Clinical staging and survival in refractory celiac disease: a single center experience. Gastroenterology. 2009;136(1):99–107; quiz 352–3.  https://doi.org/10.1053/j.gastro.2008.10.013.CrossRefPubMedGoogle Scholar
  80. 80.
    Malamut G, Afchain P, Verkarre V, Lecomte T, Amiot A, Damotte D, et al. Presentation and long-term follow-up of refractory celiac disease: comparison of type I with type II. Gastroenterology. 2009;136(1):81–90.  https://doi.org/10.1053/j.gastro.2008.09.069.CrossRefPubMedGoogle Scholar
  81. 81.
    Leslie LA, Lebwohl B, Neugut AI, Gregory Mears J, Bhagat G, Green PH. Incidence of lymphoproliferative disorders in patients with celiac disease. Am J Hematol. 2012;87(8):754–9.  https://doi.org/10.1002/ajh.23237.CrossRefPubMedGoogle Scholar
  82. 82.
    Olen O, Askling J, Ludvigsson JF, Hildebrand H, Ekbom A, Smedby KE. Coeliac disease characteristics, compliance to a gluten free diet and risk of lymphoma by subtype. Dig Liver Dis. 2011;43(11):862–8.  https://doi.org/10.1016/j.dld.2011.07.012.CrossRefPubMedGoogle Scholar
  83. 83.
    Elfstrom P, Granath F, Ye W, Ludvigsson JF. Low risk of gastrointestinal cancer among patients with celiac disease, inflammation, or latent celiac disease. Clin Gastroenterol Hepatol. 2012;10(1):30–6.  https://doi.org/10.1016/j.cgh.2011.06.029.CrossRefPubMedGoogle Scholar
  84. 84.
    Ludvigsson JF, Montgomery SM, Ekbom A, Brandt L, Granath F. Small-intestinal histopathology and mortality risk in celiac disease. JAMA. 2009;302(11):1171–8.  https://doi.org/10.1001/jama.2009.1320.CrossRefPubMedGoogle Scholar
  85. 85.
    Biagi F, Corazza GR. Defining gluten refractory enteropathy. Eur J Gastroenterol Hepatol. 2001;13(5):561–5.PubMedGoogle Scholar
  86. 86.
    West J. Celiac disease and its complications: a time traveller’s perspective. Gastroenterology. 2009;136(1):32–4.  https://doi.org/10.1053/j.gastro.2008.11.026.CrossRefPubMedGoogle Scholar
  87. 87.
    Malamut G, Cellier C. Refractory coeliac disease. Curr Opin Oncol. 2013;25(5):445–51.  https://doi.org/10.1097/01.cco.0000432526.47228.b6.CrossRefPubMedGoogle Scholar
  88. 88.
    Caruso R, Marafini I, Sedda S, Del Vecchio Blanco G, Giuffrida P, MacDonald TT, et al. Analysis of the cytokine profile in the duodenal mucosa of refractory coeliac disease patients. Clin Sci (Lond). 2014;126(6):451–8.  https://doi.org/10.1042/cs20130478.CrossRefGoogle Scholar
  89. 89.
    Sedda S, De Simone V, Marafini I, Bevivino G, Izzo R, Paoluzi OA, et al. High Smad7 sustains inflammatory cytokine response in refractory coeliac disease. Immunology. 2017;150(3):356–63.  https://doi.org/10.1111/imm.12690.CrossRefPubMedGoogle Scholar
  90. 90.
    Verkarre V, Romana SP, Cellier C, Asnafi V, Mention JJ, Barbe U, et al. Recurrent partial trisomy 1q22-q44 in clonal intraepithelial lymphocytes in refractory celiac sprue. Gastroenterology. 2003;125(1):40–6.PubMedGoogle Scholar
  91. 91.
    Daum S, Cellier C, Mulder CJ. Refractory coeliac disease. Best Pract Res Clin Gastroenterol. 2005;19(3):413–24.  https://doi.org/10.1016/j.bpg.2005.02.001.CrossRefPubMedGoogle Scholar
  92. 92.
    Daum S, Ipczynski R, Schumann M, Wahnschaffe U, Zeitz M, Ullrich R. High rates of complications and substantial mortality in both types of refractory sprue. Eur J Gastroenterol Hepatol. 2009;21(1):66–70.  https://doi.org/10.1097/MEG.0b013e328307c20c.CrossRefPubMedGoogle Scholar
  93. 93.
    Patey-Mariaud De Serre N, Cellier C, Jabri B, Delabesse E, Verkarre V, Roche B, et al. Distinction between coeliac disease and refractory sprue: a simple immunohistochemical method. Histopathology. 2000;37(1):70–7.PubMedGoogle Scholar
  94. 94.
    Verbeek WH, Goerres MS, von Blomberg BM, Oudejans JJ, Scholten PE, Hadithi M, et al. Flow cytometric determination of aberrant intra-epithelial lymphocytes predicts T-cell lymphoma development more accurately than T-cell clonality analysis in Refractory Celiac Disease. Clin Immunol. 2008;126(1):48–56.  https://doi.org/10.1016/j.clim.2007.09.002.CrossRefPubMedGoogle Scholar
  95. 95.
    de Mascarel A, Belleannee G, Stanislas S, Merlio C, Parrens M, Laharie D, et al. Mucosal intraepithelial T-lymphocytes in refractory celiac disease: a neoplastic population with a variable CD8 phenotype. Am J Surg Pathol. 2008;32(5):744–51.  https://doi.org/10.1097/PAS.0b013e318159b478.CrossRefPubMedGoogle Scholar
  96. 96.
    Zivny J, Banner BF, Agrawal S, Pihan G, Barnard GF. CD4+ T-cell lymphoproliferative disorder of the gut clinically mimicking celiac sprue. Dig Dis Sci. 2004;49(4):551–5.PubMedGoogle Scholar
  97. 97.
    Matnani R, Ganapathi KA, Lewis SK, Green PH, Alobeid B, Bhagat G. Indolent T- and NK-cell lymphoproliferative disorders of the gastrointestinal tract: a review and update. Hematol Oncol. 2017;35(1):3–16.  https://doi.org/10.1002/hon.2317.CrossRefPubMedGoogle Scholar
  98. 98.
    Margolskee E, Jobanputra V, Lewis SK, Alobeid B, Green PH, Bhagat G. Indolent small intestinal CD4+ T-cell lymphoma is a distinct entity with unique biologic and clinical features. PLoS One. 2013;8(7):e68343.  https://doi.org/10.1371/journal.pone.0068343.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Malamut G, Meresse B, Kaltenbach S, Derrieux C, Verkarre V, Macintyre E, et al. Small intestinal CD4+ T-cell lymphoma is a heterogenous entity with common pathology features. Clin Gastroenterol Hepatol. 2014;12(4):599–608.e1.  https://doi.org/10.1016/j.cgh.2013.11.028.CrossRefPubMedGoogle Scholar
  100. 100.
    Sharma A, Oishi N, Boddicker RL, Hu G, Benson HK, Ketterling RP, et al. Recurrent STAT3-JAK2 fusions in indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Blood. 2018;131(20):2262–6.  https://doi.org/10.1182/blood-2018–01–830968.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Al-Toma A, Verbeek WH, Hadithi M, von Blomberg BM, Mulder CJ. Survival in refractory coeliac disease and enteropathy-associated T-cell lymphoma: retrospective evaluation of single-centre experience. Gut. 2007;56(10):1373–8.  https://doi.org/10.1136/gut.2006.114512.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Brar P, Lee S, Lewis S, Egbuna I, Bhagat G, Green PH. Budesonide in the treatment of refractory celiac disease. Am J Gastroenterol. 2007;102(10):2265–9.  https://doi.org/10.1111/j.1572–0241.2007.01380.x.CrossRefPubMedGoogle Scholar
  103. 103.
    Al-Toma A, Goerres MS, Meijer JW, von Blomberg BM, Wahab PJ, Kerckhaert JA, et al. Cladribine therapy in refractory celiac disease with aberrant T cells. Clin Gastroenterol Hepatol. 2006;4(11):1322–7; quiz 00.  https://doi.org/10.1016/j.cgh.2006.07.007.CrossRefPubMedGoogle Scholar
  104. 104.
    Maguire AA, Greenson JK, Lauwers GY, Ginsburg RE, Williams GT, Brown IS, et al. Collagenous sprue: a clinicopathologic study of 12 cases. Am J Surg Pathol. 2009;33(10):1440–9.  https://doi.org/10.1097/PAS.0b013e3181ae2545.CrossRefPubMedGoogle Scholar
  105. 105.
    Vakiani E, Arguelles-Grande C, Mansukhani MM, Lewis SK, Rotterdam H, Green PH, et al. Collagenous sprue is not always associated with dismal outcomes: a clinicopathological study of 19 patients. Mod Pathol. 2010;23(1):12–26.  https://doi.org/10.1038/modpathol.2009.151.CrossRefPubMedGoogle Scholar
  106. 106.
    Rubio-Tapia A, Talley NJ, Gurudu SR, Wu TT, Murray JA. Gluten-free diet and steroid treatment are effective therapy for most patients with collagenous sprue. Clin Gastroenterol Hepatol. 2010;8(4):344–9.e3.  https://doi.org/10.1016/j.cgh.2009.12.023.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhao X, Johnson RL. Collagenous sprue: a rare, severe small-bowel malabsorptive disorder. Arch Pathol Lab Med. 2011;135(6):803–9.  https://doi.org/10.1043/2010–0028-rs.1.CrossRefPubMedGoogle Scholar
  108. 108.
    Schein J. Syndrome on non tropical sprue with hitherto undescribed lesions of the intestine. Gastroenterology. 1947;8(4):438–60.PubMedGoogle Scholar
  109. 109.
    Weinstein WM, Saunders DR, Tytgat GN, Rubin CE. Collagenous sprue—an unrecognized type of malabsorption. N Engl J Med. 1970;283(24):1297–301.  https://doi.org/10.1056/nejm197012102832401.CrossRefPubMedGoogle Scholar
  110. 110.
    Robert ME, Ament ME, Weinstein WM. The histologic spectrum and clinical outcome of refractory and unclassified sprue. Am J Surg Pathol. 2000;24(5):676–87.PubMedGoogle Scholar
  111. 111.
    Schoolmeester JK, Jenkins SM, Murray JA, Wu TT, Chandan VS. Increased immunoglobulin G4-positive plasma cells in collagenous sprue. Hum Pathol. 2013;44(8):1624–9.  https://doi.org/10.1016/j.humpath.2013.01.013.CrossRefPubMedGoogle Scholar
  112. 112.
    Daum S, Foss HD, Schuppan D, Riecken EO, Zeitz M, Ullrich R. Synthesis of collagen I in collagenous sprue. Clin Gastroenterol Hepatol. 2006;4(10):1232–6.  https://doi.org/10.1016/j.cgh.2006.07.003.CrossRefPubMedGoogle Scholar
  113. 113.
    Cellier C, Delabesse E, Helmer C, Patey N, Matuchansky C, Jabri B, et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. French Coeliac Disease Study Group. Lancet. 2000;356(9225):203–8.PubMedGoogle Scholar
  114. 114.
    Bossart R, Henry K, Doe WF, Booth CC. Proceedings: collagenous basement membrane thickening in jejunal biopsies from patients with adult coeliac disease. Gut. 1974;15(4):338.PubMedGoogle Scholar
  115. 115.
    Robert ME. Gluten sensitive enteropathy and other causes of small intestinal lymphocytosis. Semin Diagn Pathol. 2005;22(4):284–94.PubMedGoogle Scholar
  116. 116.
    Freeman HJ, Webber DL. Free perforation of the small intestine in collagenous sprue. World J Gastroenterol. 2009;15(35):4446–8.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Leonard J, Haffenden G, Tucker W, Unsworth J, Swain F, McMinn R, et al. Gluten challenge in dermatitis herpetiformis. N Engl J Med. 1983;308(14):816–9.  https://doi.org/10.1056/nejm198304073081406.CrossRefPubMedGoogle Scholar
  118. 118.
    Reunala T, Salmi TT, Hervonen K. Dermatitis herpetiformis: pathognomonic transglutaminase IgA deposits in the skin and excellent prognosis on a gluten-free diet. Acta Derm Venereol. 2015;95(8):917–22.  https://doi.org/10.2340/00015555–2162.CrossRefGoogle Scholar
  119. 119.
    Sardy M, Karpati S, Merkl B, Paulsson M, Smyth N. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med. 2002;195(6):747–57.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Karpati S. Dermatitis herpetiformis. Clin Dermatol. 2012;30(1):56–9.  https://doi.org/10.1016/j.clindermatol.2011.03.010.CrossRefPubMedGoogle Scholar
  121. 121.
    Rose C, Armbruster FP, Ruppert J, Igl BW, Zillikens D, Shimanovich I. Autoantibodies against epidermal transglutaminase are a sensitive diagnostic marker in patients with dermatitis herpetiformis on a normal or gluten-free diet. J Am Acad Dermatol. 2009;61(1):39–43.  https://doi.org/10.1016/j.jaad.2008.12.037.CrossRefPubMedGoogle Scholar
  122. 122.
    van de Staak WJ, van Tongeren JH. Dermatitis herpetiformis and pathological changes of the mucous membrane of the small intestine. Dermatologica. 1970;140(4):231–41.PubMedGoogle Scholar
  123. 123.
    Brow JR, Parker F, Weinstein WM, Rubin CE. The small intestinal mucosa in dermatitis herpetiformis. I. Severity and distribution of the small intestinal lesion and associated malabsorption. Gastroenterology. 1971;60(3):355–61.PubMedGoogle Scholar
  124. 124.
    Collin P, Salmi TT, Hervonen K, Kaukinen K, Reunala T. Dermatitis herpetiformis: a cutaneous manifestation of coeliac disease. Ann Med. 2017;49(1):23–31.  https://doi.org/10.1080/07853890.2016.1222450.CrossRefPubMedGoogle Scholar
  125. 125.
    Hervonen K, Alakoski A, Salmi TT, Helakorpi S, Kautiainen H, Kaukinen K, et al. Reduced mortality in dermatitis herpetiformis: a population-based study of 476 patients. Br J Dermatol. 2012;167(6):1331–7.  https://doi.org/10.1111/j.1365–2133.2012.11105.x.CrossRefPubMedGoogle Scholar
  126. 126.
    Lewis HM, Renaula TL, Garioch JJ, Leonard JN, Fry JS, Collin P, et al. Protective effect of gluten-free diet against development of lymphoma in dermatitis herpetiformis. Br J Dermatol. 1996;135(3):363–7.PubMedGoogle Scholar
  127. 127.
    Hervonen K, Vornanen M, Kautiainen H, Collin P, Reunala T. Lymphoma in patients with dermatitis herpetiformis and their first-degree relatives. Br J Dermatol. 2005;152(1):82–6.  https://doi.org/10.1111/j.1365–2133.2005.06345.x.CrossRefGoogle Scholar
  128. 128.
    Grainge MJ, West J, Solaymani-Dodaran M, Card TR, Logan RF. The long-term risk of malignancy following a diagnosis of coeliac disease or dermatitis herpetiformis: a cohort study. Aliment Pharmacol Ther. 2012;35(6):730–9.  https://doi.org/10.1111/j.1365–2036.2012.04998.x.CrossRefPubMedGoogle Scholar
  129. 129.
    Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1):10–6.  https://doi.org/10.1007/s10875–009–9357-x.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A. Selective IgA deficiency: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Scand J Immunol. 2017;85(1):3–12.  https://doi.org/10.1111/sji.12499.CrossRefGoogle Scholar
  131. 131.
    Burrows PD, Cooper MD. IgA deficiency. Adv Immunol. 1997;65:245–76.PubMedGoogle Scholar
  132. 132.
    Abolhassani H, Gharib B, Shahinpour S, Masoom SN, Havaei A, Mirminachi B, et al. Autoimmunity in patients with selective IgA deficiency. J Investig Allergol Clin Immunol. 2015;25(2):112–9.Google Scholar
  133. 133.
    Cataldo F, Marino V, Ventura A, Bottaro G, Corazza GR. Prevalence and clinical features of selective immunoglobulin A deficiency in coeliac disease: an Italian multicentre study. Italian Society of Paediatric Gastroenterology and Hepatology (SIGEP) and “Club del Tenue” Working Groups on Coeliac Disease. Gut. 1998;42(3):362–5.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Chow MA, Lebwohl B, Reilly NR, Green PH. Immunoglobulin A deficiency in celiac disease. J Clin Gastroenterol. 2012;46(10):850–4.  https://doi.org/10.1097/MCG.0b013e31824b2277.CrossRefPubMedGoogle Scholar
  135. 135.
    Woof JM, Kerr MA. The function of immunoglobulin A in immunity. J Pathol. 2006;208(2):270–82.  https://doi.org/10.1002/path.1877.CrossRefPubMedGoogle Scholar
  136. 136.
    Macpherson AJ, Geuking MB, McCoy KD. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology. 2005;115(2):153–62.  https://doi.org/10.1111/j.1365–2567.2005.02159.x.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Wang Z, Yunis D, Irigoyen M, Kitchens B, Bottaro A, Alt FW, et al. Discordance between IgA switching at the DNA level and IgA expression at the mRNA level in IgA-deficient patients. Clin Immunol. 1999;91(3):263–70.  https://doi.org/10.1006/clim.1999.4702.CrossRefPubMedGoogle Scholar
  138. 138.
    Brandtzaeg P, Karlsson G, Hansson G, Petruson B, Bjorkander J, Hanson LA. The clinical condition of IgA-deficient patients is related to the proportion of IgD- and IgM-producing cells in their nasal mucosa. Clin Exp Immunol. 1987;67(3):626–36.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.  https://doi.org/10.1038/ng1601.CrossRefPubMedGoogle Scholar
  140. 140.
    Rachid R, Castigli E, Geha RS, Bonilla FA. TACI mutation in common variable immunodeficiency and IgA deficiency. Curr Allergy Asthma Rep. 2006;6(5):357–62.PubMedGoogle Scholar
  141. 141.
    Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, Pan-Hammarstrom Q, Kaartinen T, et al. The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 2009;10(2):151–61.  https://doi.org/10.1038/gene.2008.89.CrossRefGoogle Scholar
  142. 142.
    Jacob CM, Pastorino AC, Fahl K, Carneiro-Sampaio M, Monteiro RC. Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol. 2008;28(Suppl 1):S56–61.  https://doi.org/10.1007/s10875–007–9163–2.CrossRefGoogle Scholar
  143. 143.
    Singh K, Chang C, Gershwin ME. IgA deficiency and autoimmunity. Autoimmun Rev. 2014;13(2):163–77.  https://doi.org/10.1016/j.autrev.2013.10.005.CrossRefGoogle Scholar
  144. 144.
    Yazdani R, Latif A, Tabassomi F, Abolhassani H, Azizi G, Rezaei N, et al. Clinical phenotype classification for selective immunoglobulin A deficiency. Expert Rev Clin Immunol. 2015;11(11):1245–54.  https://doi.org/10.1586/1744666x.2015.1081565.CrossRefPubMedGoogle Scholar
  145. 145.
    Wang N, Shen N, Vyse TJ, Anand V, Gunnarson I, Sturfelt G, et al. Selective IgA deficiency in autoimmune diseases. Mol Med. 2011;17(11–12):1383–96.  https://doi.org/10.2119/molmed.2011.00195.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Zinneman HH, Kaplan AP. The association of giardiasis with reduced intestinal secretory immunoglobulin A. Am J Dig Dis. 1972;17(9):793–7.PubMedGoogle Scholar
  147. 147.
    Meini A, Pillan NM, Villanacci V, Monafo V, Ugazio AG, Plebani A. Prevalence and diagnosis of celiac disease in IgA-deficient children. Ann Allergy Asthma Immunol. 1996;77(4):333–6.  https://doi.org/10.1016/s1081–1206(10)63329–7.CrossRefGoogle Scholar
  148. 148.
    Brandtzaeg P. Update on mucosal immunoglobulin A in gastrointestinal disease. Curr Opin Gastroenterol. 2010;26(6):554–63.  https://doi.org/10.1097/MOG.0b013e32833dccf8.CrossRefPubMedGoogle Scholar
  149. 149.
    Iizuka M, Itou H, Sato M, Yukawa M, Shirasaka T, Chiba M, et al. Crohn’s disease associated with selective immunoglobulin a deficiency. J Gastroenterol Hepatol. 2001;16(8):951–2.PubMedGoogle Scholar
  150. 150.
    Asada Y, Isomoto H, Shikuwa S, Wen CY, Fukuda E, Miyazato M, et al. Development of ulcerative colitis during the course of rheumatoid arthritis: association with selective IgA deficiency. World J Gastroenterol. 2006;12(32):5240–3.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Lai Ping So A, Mayer L. Gastrointestinal manifestations of primary immunodeficiency disorders. Semin Gastrointest Dis. 1997;8(1):22–32.PubMedGoogle Scholar
  152. 152.
    Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J Clin Immunol. 2001;21(5):303–9.PubMedGoogle Scholar
  153. 153.
    Klemola T. Immunohistochemical findings in the intestine of IgA-deficient persons: number of intraepithelial T lymphocytes is increased. J Pediatr Gastroenterol Nutr. 1988;7(4):537–43.PubMedGoogle Scholar
  154. 154.
    Piascik M, Rydzewska G, Pawlik M, Milewski J, Furmanek MI, Wronska E, et al. Diffuse nodular lymphoid hyperplasia of the gastrointestinal tract in patient with selective immunoglobulin A deficiency and sarcoid-like syndrome—case report. Adv Med Sci. 2007;52:296–300.PubMedGoogle Scholar
  155. 155.
    Joo M, Shim SH, Chang SH, Kim H, Chi JG, Kim NH. Nodular lymphoid hyperplasia and histologic changes mimicking celiac disease, collagenous sprue, and lymphocytic colitis in a patient with selective IgA deficiency. Pathol Res Pract. 2009;205(12):876–80.  https://doi.org/10.1016/j.prp.2009.02.005.CrossRefPubMedGoogle Scholar
  156. 156.
    Hammarstrom L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol. 2000;120(2):225–31.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Aghamohammadi A, Mohammadi J, Parvaneh N, Rezaei N, Moin M, Espanol T, et al. Progression of selective IgA deficiency to common variable immunodeficiency. Int Arch Allergy Immunol. 2008;147(2):87–92.  https://doi.org/10.1159/000135694.CrossRefGoogle Scholar
  158. 158.
    Mellemkjaer L, Hammarstrom L, Andersen V, Yuen J, Heilmann C, Barington T, et al. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: a combined Danish and Swedish study. Clin Exp Immunol. 2002;130(3):495–500.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Mir-Madjlessi SH, Vafai M, Khademi J, Kamalian N. Coexisting primary malignant lymphoma and adenocarcinoma of the large intestine in an IgA-deficient boy. Dis Colon Rectum. 1984;27(12):822–4.PubMedGoogle Scholar
  160. 160.
    Kersey JH, Shapiro RS, Filipovich AH. Relationship of immunodeficiency to lymphoid malignancy. Pediatr Infect Dis J. 1988;7(5 Suppl):S10–2.PubMedGoogle Scholar
  161. 161.
    Unsworth DJ, Walker-Smith JA. Autoimmunity in diarrhoeal disease. J Pediatr Gastroenterol Nutr. 1985;4(3):375–80.PubMedGoogle Scholar
  162. 162.
    Akram S, Murray JA, Pardi DS, Alexander GL, Schaffner JA, Russo PA, et al. Adult autoimmune enteropathy: Mayo Clinic Rochester experience. Clin Gastroenterol Hepatol. 2007;5(11):1282–90; quiz 45.  https://doi.org/10.1016/j.cgh.2007.05.013.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Montalto M, D’Onofrio F, Santoro L, Gallo A, Gasbarrini A, Gasbarrini G. Autoimmune enteropathy in children and adults. Scand J Gastroenterol. 2009;44(9):1029–36.  https://doi.org/10.1080/00365520902783691.CrossRefPubMedGoogle Scholar
  164. 164.
    Gentile NM, Murray JA, Pardi DS. Autoimmune enteropathy: a review and update of clinical management. Curr Gastroenterol Rep. 2012;14(5):380–5.  https://doi.org/10.1007/s11894–012–0276–2.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Walker-Smith JA, Unsworth DJ, Hutchins P, Phillips AD, Holborow EJ. Autoantibodies against gut epithelium in child with small-intestinal enteropathy. Lancet. 1982;1(8271):566–7.PubMedGoogle Scholar
  166. 166.
    Catassi C, Fabiani E, Spagnuolo MI, Barera G, Guarino A. Severe and protracted diarrhea: results of the 3-year SIGEP multicenter survey. Working Group of the Italian Society of Pediatric Gastroenterology and Hepatology (SIGEP). J Pediatr Gastroenterol Nutr. 1999;29(1):63–8.PubMedGoogle Scholar
  167. 167.
    Goulet OJ, Brousse N, Canioni D, Walker-Smith JA, Schmitz J, Phillips AD. Syndrome of intractable diarrhoea with persistent villous atrophy in early childhood: a clinicopathological survey of 47 cases. J Pediatr Gastroenterol Nutr. 1998;26(2):151–61.PubMedGoogle Scholar
  168. 168.
    Corazza GR, Biagi F, Volta U, Andreani ML, De Franceschi L, Gasbarrini G. Autoimmune enteropathy and villous atrophy in adults. Lancet. 1997;350(9071):106–9.  https://doi.org/10.1016/s0140–6736(97)01042–8.CrossRefPubMedGoogle Scholar
  169. 169.
    Masia R, Peyton S, Lauwers GY, Brown I. Gastrointestinal biopsy findings of autoimmune enteropathy: a review of 25 cases. Am J Surg Pathol. 2014;38(10):1319–29.  https://doi.org/10.1097/pas.0000000000000317.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Patey-Mariaud de Serre N, Canioni D, Ganousse S, Rieux-Laucat F, Goulet O, Ruemmele F, et al. Digestive histopathological presentation of IPEX syndrome. Mod Pathol. 2009;22(1):95–102.  https://doi.org/10.1038/modpathol.2008.161.CrossRefPubMedGoogle Scholar
  171. 171.
    Singhi AD, Goyal A, Davison JM, Regueiro MD, Roche RL, Ranganathan S. Pediatric autoimmune enteropathy: an entity frequently associated with immunodeficiency disorders. Mod Pathol. 2014;27(4):543–53.  https://doi.org/10.1038/modpathol.2013.150.CrossRefPubMedGoogle Scholar
  172. 172.
    Ruemmele FM, Moes N, de Serre NP, Rieux-Laucat F, Goulet O. Clinical and molecular aspects of autoimmune enteropathy and immune dysregulation, polyendocrinopathy autoimmune enteropathy X-linked syndrome. Curr Opin Gastroenterol. 2008;24(6):742–8.  https://doi.org/10.1097/MOG.0b013e32830c9022.CrossRefPubMedGoogle Scholar
  173. 173.
    Umetsu SE, Brown I, Langner C, Lauwers GY. Autoimmune enteropathies. Virchows Arch. 2017;  https://doi.org/10.1007/s00428–017–2243–7.
  174. 174.
    Kisand K, Peterson P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J Clin Immunol. 2015;35(5):463–78.  https://doi.org/10.1007/s10875–015–0176-y.CrossRefPubMedGoogle Scholar
  175. 175.
    Mirakian R, Hill S, Richardson A, Milla PJ, Walker-Smith JA, Bottazzo GF. HLA product expression and lymphocyte subpopulations in jejunum biopsies of children with idiopathic protracted diarrhoea and enterocyte autoantibodies. J Autoimmun. 1988;1(3):263–77.PubMedGoogle Scholar
  176. 176.
    Mais DD, Mulhall BP, Adolphson KR, Yamamoto K. Thymoma-associated autoimmune enteropathy. A report of two cases. Am J Clin Pathol. 1999;112(6):810–5.PubMedGoogle Scholar
  177. 177.
    Elwing JE, Clouse RE. Adult-onset autoimmune enteropathy in the setting of thymoma successfully treated with infliximab. Dig Dis Sci. 2005;50(5):928–32.PubMedGoogle Scholar
  178. 178.
    Oble DA, Mino-Kenudson M, Goldsmith J, Hodi FS, Seliem RM, Dranoff G, et al. Alpha-CTLA-4 mAb-associated panenteritis: a histologic and immunohistochemical analysis. Am J Surg Pathol. 2008;32(8):1130–7.  https://doi.org/10.1097/PAS.0b013e31817150e3.CrossRefPubMedGoogle Scholar
  179. 179.
    Gonzalez RS, Salaria SN, Bohannon CD, Huber AR, Feely MM, Shi C. PD-1 inhibitor gastroenterocolitis: case series and appraisal of ‘immunomodulatory gastroenterocolitis’. Histopathology. 2017;70(4):558–67.  https://doi.org/10.1111/his.13118.CrossRefPubMedGoogle Scholar
  180. 180.
    Louie CY, DiMaio MA, Matsukuma KE, Coutre SE, Berry GJ, Longacre TA. Idelalisib-associated enterocolitis: clinicopathologic features and distinction from other enterocolitides. Am J Surg Pathol. 2015;39(12):1653–60.  https://doi.org/10.1097/pas.0000000000000525.CrossRefPubMedGoogle Scholar
  181. 181.
    Moes N, Rieux-Laucat F, Begue B, Verdier J, Neven B, Patey N, et al. Reduced expression of FOXP3 and regulatory T-cell function in severe forms of early-onset autoimmune enteropathy. Gastroenterology. 2010;139(3):770–8.  https://doi.org/10.1053/j.gastro.2010.06.006.CrossRefPubMedGoogle Scholar
  182. 182.
    Marthey L, Cadiot G, Seksik P, Pouderoux P, Lacroute J, Skinazi F, et al. Olmesartan-associated enteropathy: results of a national survey. Aliment Pharmacol Ther. 2014;40(9):1103–9.  https://doi.org/10.1111/apt.12937.CrossRefPubMedGoogle Scholar
  183. 183.
    Burbure N, Lebwohl B, Arguelles-Grande C, Green PH, Bhagat G, Lagana S. Olmesartan-associated sprue-like enteropathy: a systematic review with emphasis on histopathology. Hum Pathol. 2016;50:127–34.  https://doi.org/10.1016/j.humpath.2015.12.001.CrossRefPubMedGoogle Scholar
  184. 184.
    DeGaetani M, Tennyson CA, Lebwohl B, Lewis SK, Abu Daya H, Arguelles-Grande C, et al. Villous atrophy and negative celiac serology: a diagnostic and therapeutic dilemma. Am J Gastroenterol. 2013;108(5):647–53.  https://doi.org/10.1038/ajg.2013.45.CrossRefPubMedGoogle Scholar
  185. 185.
    Marietta EV, Nadeau AM, Cartee AK, Singh I, Rishi A, Choung RS, et al. Immunopathogenesis of olmesartan-associated enteropathy. Aliment Pharmacol Ther. 2015;42(11–12):1303–14.  https://doi.org/10.1111/apt.13413.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Mandavdhare HS, Sharma V, Prasad KK, Kumar A, Rathi M, Rana SS. Telmisartan-induced sprue-like enteropathy: a case report and a review of patients using non-olmesartan angiotensin receptor blockers. Intest Res. 2017;15(3):419–21.  https://doi.org/10.5217/ir.2017.15.3.419.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Zanelli M, Negro A, Santi R, Bisagni A, Ragazzi M, Ascani S, et al. Letter: sprue-like enteropathy associated with angiotensin II receptor blockers other than olmesartan. Aliment Pharmacol Ther. 2017;46(4):471–3.  https://doi.org/10.1111/apt.14176.CrossRefPubMedGoogle Scholar
  188. 188.
    Choi EY, McKenna BJ. Olmesartan-associated enteropathy: a review of clinical and histologic findings. Arch Pathol Lab Med. 2015;139(10):1242–7.  https://doi.org/10.5858/arpa.2015–0204-RA.CrossRefPubMedGoogle Scholar
  189. 189.
    Ianiro G, Bibbo S, Montalto M, Ricci R, Gasbarrini A, Cammarota G. Systematic review: sprue-like enteropathy associated with olmesartan. Aliment Pharmacol Ther. 2014;40(1):16–23.  https://doi.org/10.1111/apt.12780.CrossRefPubMedGoogle Scholar
  190. 190.
    Scialom S, Malamut G, Meresse B, Guegan N, Brousse N, Verkarre V, et al. Gastrointestinal disorder associated with olmesartan mimics autoimmune enteropathy. PLoS One. 2015;10(6):e0125024.  https://doi.org/10.1371/journal.pone.0125024.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Lagana SM, Braunstein ED, Arguelles-Grande C, Bhagat G, Green PH, Lebwohl B. Sprue-like histology in patients with abdominal pain taking olmesartan compared with other angiotensin receptor blockers. J Clin Pathol. 2015;68(1):29–32.  https://doi.org/10.1136/jclinpath-2014–202615.CrossRefPubMedGoogle Scholar
  192. 192.
    Mathan VI. Tropical sprue. Springer Semin Immunopathol. 1990;12(2–3):231–7.PubMedGoogle Scholar
  193. 193.
    Nath SK. Tropical sprue. Curr Gastroenterol Rep. 2005;7(5):343–9.PubMedGoogle Scholar
  194. 194.
    Cook GC. Aetiology and pathogenesis of postinfective tropical malabsorption (tropical sprue). Lancet. 1984;1(8379):721–3.PubMedGoogle Scholar
  195. 195.
    Ghoshal UC, Ghoshal U, Ayyagari A, Ranjan P, Krishnani N, Misra A, et al. Tropical sprue is associated with contamination of small bowel with aerobic bacteria and reversible prolongation of orocecal transit time. J Gastroenterol Hepatol. 2003;18(5):540–7.PubMedGoogle Scholar
  196. 196.
    Walker MM. What is tropical sprue? J Gastroenterol Hepatol. 2003;18(8):887–90.PubMedGoogle Scholar
  197. 197.
    Haghighi P, Wolf PL. Tropical sprue and subclinical enteropathy: a vision for the nineties. Crit Rev Clin Lab Sci. 1997;34(4):313–41.  https://doi.org/10.3109/10408369708998096.CrossRefPubMedGoogle Scholar
  198. 198.
    Batheja MJ, Leighton J, Azueta A, Heigh R. The face of tropical sprue in 2010. Case Rep Gastroenterol. 2010;4(2):168–72.  https://doi.org/10.1159/000314231.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Brown IS, Bettington A, Bettington M, Rosty C. Tropical sprue: revisiting an underrecognized disease. Am J Surg Pathol. 2014;38(5):666–72.  https://doi.org/10.1097/pas.0000000000000153.CrossRefPubMedGoogle Scholar
  200. 200.
    Swanson VL, Thomassen RW. Pathology of the jejunal mucosa in tropical sprue. Am J Pathol. 1965;46:511–51.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Puri AS, Khan EM, Kumar M, Pandey R, Choudhuri G. Association of lymphocytic (microscopic) colitis with tropical sprue. J Gastroenterol Hepatol. 1994;9(1):105–7.PubMedGoogle Scholar
  202. 202.
    Langenberg MC, Wismans PJ, van Genderen PJ. Distinguishing tropical sprue from celiac disease in returning travellers with chronic diarrhoea: a diagnostic challenge? Travel Med Infect Dis. 2014;12(4):401–5.  https://doi.org/10.1016/j.tmaid.2014.05.001.CrossRefPubMedGoogle Scholar
  203. 203.
    Rickles FR, Klipstein FA, Tomasini J, Corcino JJ, Maldonado N. Long-term follow-up of antibiotic-treated tropical sprue. Ann Intern Med. 1972;76(2):203–10.PubMedGoogle Scholar
  204. 204.
    Bures J, Cyrany J, Kohoutova D, Forstl M, Rejchrt S, Kvetina J, et al. Small intestinal bacterial overgrowth syndrome. World J Gastroenterol. 2010;16(24):2978–90.PubMedPubMedCentralGoogle Scholar
  205. 205.
    Rezaie A, Pimentel M, Rao SS. How to test and treat small intestinal bacterial overgrowth: an evidence-based approach. Curr Gastroenterol Rep. 2016;18(2):8.  https://doi.org/10.1007/s11894–015–0482–9.CrossRefPubMedGoogle Scholar
  206. 206.
    Teo M, Chung S, Chitti L, Tran C, Kritas S, Butler R, et al. Small bowel bacterial overgrowth is a common cause of chronic diarrhea. J Gastroenterol Hepatol. 2004;19(8):904–9.  https://doi.org/10.1111/j.1440–1746.2004.03376.x.CrossRefPubMedGoogle Scholar
  207. 207.
    Lappinga PJ, Abraham SC, Murray JA, Vetter EA, Patel R, Wu TT. Small intestinal bacterial overgrowth: histopathologic features and clinical correlates in an underrecognized entity. Arch Pathol Lab Med. 2010;134(2):264–70.  https://doi.org/10.1043/1543–2165–134.2.264.CrossRefPubMedGoogle Scholar
  208. 208.
    Bouhnik Y, Alain S, Attar A, Flourie B, Raskine L, Sanson-Le Pors MJ, et al. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am J Gastroenterol. 1999;94(5):1327–31.  https://doi.org/10.1111/j.1572–0241.1999.01016.x.CrossRefPubMedGoogle Scholar
  209. 209.
    Ghoshal UC, Shukla R, Ghoshal U. Small intestinal bacterial overgrowth and irritable bowel syndrome: a bridge between functional organic dichotomy. Gut Liver. 2017;11(2):196–208.  https://doi.org/10.5009/gnl16126.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Ament ME, Shimoda SS, Saunders DR, Rubin CE. Pathogenesis of steatorrhea in three cases of small intestinal stasis syndrome. Gastroenterology. 1972;63(5):728–47.PubMedGoogle Scholar
  211. 211.
    Haboubi NY, Lee GS, Montgomery RD. Duodenal mucosal morphometry of elderly patients with small intestinal bacterial overgrowth: response to antibiotic treatment. Age Ageing. 1991;20(1):29–32.PubMedGoogle Scholar
  212. 212.
    Riordan SM, McIver CJ, Wakefield D, Duncombe VM, Bolin TD, Thomas MC. Luminal antigliadin antibodies in small intestinal bacterial overgrowth. Am J Gastroenterol. 1997;92(8):1335–8.PubMedGoogle Scholar
  213. 213.
    Lauritano EC, Gabrielli M, Scarpellini E, Lupascu A, Novi M, Sottili S, et al. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am J Gastroenterol. 2008;103(8):2031–5.PubMedGoogle Scholar
  214. 214.
    Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res. 2015;56(5):945–62.  https://doi.org/10.1194/jlr.R052415.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Burnett JR, Bell DA, Hooper AJ, Hegele RA. Clinical utility gene card for: Abetalipoproteinaemia—Update 2014. Eur J Hum Genet. 2015;23(6)  https://doi.org/10.1038/ejhg.2014.224.Google Scholar
  216. 216.
    Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science (New York, NY). 1992;258(5084):999–1001.Google Scholar
  217. 217.
    Shoulders CC, Brett DJ, Bayliss JD, Narcisi TM, Jarmuz A, Grantham TT, et al. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet. 1993;2(12):2109–16.PubMedGoogle Scholar
  218. 218.
    Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M, Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr. 2000;20:663–97.  https://doi.org/10.1146/annurev.nutr.20.1.663.CrossRefPubMedGoogle Scholar
  219. 219.
    Collins JC, Scheinberg IH, Giblin DR, Sternlieb I. Hepatic peroxisomal abnormalities in abetalipoproteinemia. Gastroenterology. 1989;97(3):766–70.PubMedGoogle Scholar
  220. 220.
    Avigan MI, Ishak KG, Gregg RE, Hoofnagle JH. Morphologic features of the liver in abetalipoproteinemia. Hepatology. 1984;4(6):1223–6.PubMedGoogle Scholar
  221. 221.
    Sidler AK, Huston BM, Thomas DB. Pathological case of the month. Abetalipoproteinemia (Bassen-Kornzweig syndrome). Arch Pediatr Adolesc Med. 1997;151(12):1265–6.PubMedGoogle Scholar
  222. 222.
    Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014;37(3):333–9.  https://doi.org/10.1007/s10545–013–9665–4.CrossRefPubMedGoogle Scholar
  223. 223.
    Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, McLeod RS, et al. Missense mutations in APOB within the betaalpha1 domain of human APOB-100 result in impaired secretion of ApoB and ApoB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem. 2007;282(33):24270–83.  https://doi.org/10.1074/jbc.M702442200.CrossRefPubMedGoogle Scholar
  224. 224.
    Vongsuvanh R, Hooper AJ, Coakley JC, Macdessi JS, O’Loughlin EV, Burnett JR, et al. Novel mutations in abetalipoproteinaemia and homozygous familial hypobetalipoproteinaemia. J Inherit Metab Dis. 2007;30(6):990.  https://doi.org/10.1007/s10545–007–0693–9.CrossRefPubMedGoogle Scholar
  225. 225.
    Tarugi P, Lonardo A, Ballarini G, Grisendi A, Pulvirenti M, Bagni A, et al. Fatty liver in heterozygous hypobetalipoproteinemia caused by a novel truncated form of apolipoprotein B. Gastroenterology. 1996;111(4):1125–33.PubMedGoogle Scholar
  226. 226.
    Schonfeld G, Patterson BW, Yablonskiy DA, Tanoli TS, Averna M, Elias N, et al. Fatty liver in familial hypobetalipoproteinemia: triglyceride assembly into VLDL particles is affected by the extent of hepatic steatosis. J Lipid Res. 2003;44(3):470–8.  https://doi.org/10.1194/jlr.M200342-JLR200.CrossRefPubMedGoogle Scholar
  227. 227.
    Lonardo A, Tarugi P, Ballarini G, Bagni A. Familial heterozygous hypobetalipoproteinemia, extrahepatic primary malignancy, and hepatocellular carcinoma. Dig Dis Sci. 1998;43(11):2489–92.PubMedGoogle Scholar
  228. 228.
    Bonnefont-Rousselot D, Condat B, Sassolas A, Chebel S, Bittar R, Federspiel MC, et al. Cryptogenic cirrhosis in a patient with familial hypocholesterolemia due to a new truncated form of apolipoprotein B. Eur J Gastroenterol Hepatol. 2009;21(1):104–8.  https://doi.org/10.1097/MEG.0b013e3282ffd9f8.CrossRefPubMedGoogle Scholar
  229. 229.
    Cefalu AB, Pirruccello JP, Noto D, Gabriel S, Valenti V, Gupta N, et al. A novel APOB mutation identified by exome sequencing cosegregates with steatosis, liver cancer, and hypocholesterolemia. Arterioscler Thromb Vasc Biol. 2013;33(8):2021–5.  https://doi.org/10.1161/atvbaha.112.301101.CrossRefPubMedGoogle Scholar
  230. 230.
    Jones B, Jones EL, Bonney SA, Patel HN, Mensenkamp AR, Eichenbaum-Voline S, et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet. 2003;34(1):29–31.  https://doi.org/10.1038/ng1145.CrossRefPubMedGoogle Scholar
  231. 231.
    Silvain M, Bligny D, Aparicio T, Laforet P, Grodet A, Peretti N, et al. Anderson’s disease (chylomicron retention disease): a new mutation in the SARA2 gene associated with muscular and cardiac abnormalities. Clin Genet. 2008;74(6):546–52.  https://doi.org/10.1111/j.1399–0004.2008.01069.x.CrossRefPubMedGoogle Scholar
  232. 232.
    Boldrini R, Biselli R, Bosman C. Chylomicron retention disease—the role of ultrastructural examination in differential diagnosis. Pathol Res Pract. 2001;197(11):753–7.  https://doi.org/10.1078/0344–0338–00154.CrossRefPubMedGoogle Scholar
  233. 233.
    Peretti N, Sassolas A, Roy CC, Deslandres C, Charcosset M, Castagnetti J, et al. Guidelines for the diagnosis and management of chylomicron retention disease based on a review of the literature and the experience of two centers. Orphanet J Rare Dis. 2010;5:24.  https://doi.org/10.1186/1750–1172–5-24.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Avery GB, Villavicencio O, Lilly JR, Randolph JG. Intractable diarrhea in early infancy. Pediatrics. 1968;41(4):712–22.PubMedGoogle Scholar
  235. 235.
    Reifen RM, Cutz E, Griffiths AM, Ngan BY, Sherman PM. Tufting enteropathy: a newly recognized clinicopathological entity associated with refractory diarrhea in infants. J Pediatr Gastroenterol Nutr. 1994;18(3):379–85.PubMedGoogle Scholar
  236. 236.
    Sivagnanam M, Mueller JL, Lee H, Chen Z, Nelson SF, Turner D, et al. Identification of EpCAM as the gene for congenital tufting enteropathy. Gastroenterology. 2008;135(2):429–37.  https://doi.org/10.1053/j.gastro.2008.05.036.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Goulet O, Salomon J, Ruemmele F, de Serres NP, Brousse N. Intestinal epithelial dysplasia (tufting enteropathy). Orphanet J Rare Dis. 2007;2:20.  https://doi.org/10.1186/1750–1172–2-20.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Patey N, Scoazec JY, Cuenod-Jabri B, Canioni D, Kedinger M, Goulet O, et al. Distribution of cell adhesion molecules in infants with intestinal epithelial dysplasia (tufting enteropathy). Gastroenterology. 1997;113(3):833–43.PubMedGoogle Scholar
  239. 239.
    Guerra E, Lattanzio R, La Sorda R, Dini F, Tiboni GM, Piantelli M, et al. mTrop1/Epcam knockout mice develop congenital tufting enteropathy through dysregulation of intestinal E-cadherin/beta-catenin. PLoS One. 2012;7(11):e49302.  https://doi.org/10.1371/journal.pone.0049302.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Mueller JL, McGeough MD, Pena CA, Sivagnanam M. Functional consequences of EpCam mutation in mice and men. Am J Physiol Gastrointest Liver Physiol. 2014;306(4):G278–88.  https://doi.org/10.1152/ajpgi.00286.2013.CrossRefPubMedGoogle Scholar
  241. 241.
    Salomon J, Goulet O, Canioni D, Brousse N, Lemale J, Tounian P, et al. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133(3):299–310.  https://doi.org/10.1007/s00439–013–1380–6.CrossRefPubMedGoogle Scholar
  242. 242.
    Abely M, Hankard GF, Hugot JP, Cezard JP, Peuchmaur M, Navarro J. Intractable infant diarrhea with epithelial dysplasia associated with polymalformation. J Pediatr Gastroenterol Nutr. 1998;27(3):348–52.PubMedGoogle Scholar
  243. 243.
    Bird LM, Sivagnanam M, Taylor S, Newbury RO. A new syndrome of tufting enteropathy and choanal atresia, with ophthalmologic, hematologic and hair abnormalities. Clin Dysmorphol. 2007;16(4):211–21.  https://doi.org/10.1097/MCD.0b013e328274264b.CrossRefPubMedGoogle Scholar
  244. 244.
    Roche O, Putterman M, Salomon J, Lacaille F, Brousse N, Goulet O, et al. Superficial punctate keratitis and conjunctival erosions associated with congenital tufting enteropathy. Am J Ophthalmol. 2010;150(1):116–21.e1.  https://doi.org/10.1016/j.ajo.2010.01.034.CrossRefPubMedGoogle Scholar
  245. 245.
    Ranganathan S, Schmitt LA, Sindhi R. Tufting enteropathy revisited: the utility of MOC31 (EpCAM) immunohistochemistry in diagnosis. Am J Surg Pathol. 2014;38(2):265–72.  https://doi.org/10.1097/pas.0000000000000106.CrossRefPubMedGoogle Scholar
  246. 246.
    Treetipsatit J, Hazard FK. Features of gastric and colonic mucosa in congenital enteropathies: a study in histology and immunohistochemistry. Am J Surg Pathol. 2014;38(12):1697–706.  https://doi.org/10.1097/pas.0000000000000287.CrossRefPubMedGoogle Scholar
  247. 247.
    Martin BA, Kerner JA, Hazard FK, Longacre TA. Evaluation of intestinal biopsies for pediatric enteropathy: a proposed immunohistochemical panel approach. Am J Surg Pathol. 2014;38(10):1387–95.  https://doi.org/10.1097/pas.0000000000000314.CrossRefPubMedGoogle Scholar
  248. 248.
    Davidson GP, Cutz E, Hamilton JR, Gall DG. Familial enteropathy: a syndrome of protracted diarrhea from birth, failure to thrive, and hypoplastic villus atrophy. Gastroenterology. 1978;75(5):783–90.PubMedGoogle Scholar
  249. 249.
    Ruemmele FM, Schmitz J, Goulet O. Microvillous inclusion disease (microvillous atrophy). Orphanet J Rare Dis. 2006;1:22.  https://doi.org/10.1186/1750–1172–1-22.CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Vogel GF, Hess MW, Pfaller K, Huber LA, Janecke AR, Muller T. Towards understanding microvillus inclusion disease. Mol Cell Pediatr. 2016;3(1):3.  https://doi.org/10.1186/s40348–016–0031–0.CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Muller T, Hess MW, Schiefermeier N, Pfaller K, Ebner HL, Heinz-Erian P, et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat Genet. 2008;40(10):1163–5.  https://doi.org/10.1038/ng.225.CrossRefPubMedGoogle Scholar
  252. 252.
    Wiegerinck CL, Janecke AR, Schneeberger K, Vogel GF, van Haaften-Visser DY, Escher JC, et al. Loss of syntaxin 3 causes variant microvillus inclusion disease. Gastroenterology. 2014;147(1):65–8.e10.  https://doi.org/10.1053/j.gastro.2014.04.002.CrossRefPubMedGoogle Scholar
  253. 253.
    Pohl JF, Shub MD, Trevelline EE, Ingebo K, Silber G, Rayhorn N, et al. A cluster of microvillous inclusion disease in the Navajo population. J Pediatr. 1999;134(1):103–6.PubMedGoogle Scholar
  254. 254.
    Canani RB, Castaldo G, Bacchetta R, Martin MG, Goulet O. Congenital diarrhoeal disorders: advances in this evolving web of inherited enteropathies. Nat Rev Gastroenterol Hepatol. 2015;12(5):293–302.  https://doi.org/10.1038/nrgastro.2015.44.CrossRefPubMedGoogle Scholar
  255. 255.
    Overeem AW, Posovszky C, Rings EH, Giepmans BN, van ISC. The role of enterocyte defects in the pathogenesis of congenital diarrheal disorders. Dis Model Mech. 2016;9(1):1–12.  https://doi.org/10.1242/dmm.022269.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Knowles BC, Roland JT, Krishnan M, Tyska MJ, Lapierre LA, Dickman PS, et al. Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease. J Clin Invest. 2014;124(7):2947–62.  https://doi.org/10.1172/jci71651.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Kravtsov DV, Ahsan MK, Kumari V, van Ijzendoorn SC, Reyes-Mugica M, Kumar A, et al. Identification of intestinal ion transport defects in microvillus inclusion disease. Am J Physiol Gastrointest Liver Physiol. 2016;311(1):G142–55.  https://doi.org/10.1152/ajpgi.00041.2016.CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Stepensky P, Bartram J, Barth TF, Lehmberg K, Walther P, Amann K, et al. Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18–2 mutations. Pediatr Blood Cancer. 2013;60(7):1215–22.  https://doi.org/10.1002/pbc.24475.CrossRefPubMedGoogle Scholar
  259. 259.
    Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, et al. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology. 2014;60(1):301–10.  https://doi.org/10.1002/hep.26974.CrossRefPubMedGoogle Scholar
  260. 260.
    Perry A, Bensallah H, Martinez-Vinson C, Berrebi D, Arbeille B, Salomon J, et al. Microvillous atrophy: atypical presentations. J Pediatr Gastroenterol Nutr. 2014;59(6):779–85.  https://doi.org/10.1097/mpg.0000000000000526.CrossRefPubMedGoogle Scholar
  261. 261.
    Phillips AD, Jenkins P, Raafat F, Walker-Smith JA. Congenital microvillous atrophy: specific diagnostic features. Arch Dis Child. 1985;60(2):135–40.PubMedPubMedCentralGoogle Scholar
  262. 262.
    Raafat F, Green NJ, Nathavitharana KA, Booth IW. Intestinal microvillous dystrophy: a variant of microvillous inclusion disease or a new entity? Hum Pathol. 1994;25(11):1243–8.PubMedGoogle Scholar
  263. 263.
    Al-Daraji WI, Zelger B, Zelger B, Hussein MR. Microvillous inclusion disease: a clinicopathologic study of 17 cases from the UK. Ultrastruct Pathol. 2010;34(6):327–32.  https://doi.org/10.3109/01913123.2010.500447.CrossRefPubMedGoogle Scholar
  264. 264.
    Groisman GM, Ben-Izhak O, Schwersenz A, Berant M, Fyfe B. The value of polyclonal carcinoembryonic antigen immunostaining in the diagnosis of microvillous inclusion disease. Hum Pathol. 1993;24(11):1232–7.PubMedGoogle Scholar
  265. 265.
    Groisman GM, Amar M, Livne E. CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am J Surg Pathol. 2002;26(7):902–7.PubMedGoogle Scholar
  266. 266.
    Talmon G, Holzapfel M, DiMaio DJ, Muirhead D. Rab11 is a useful tool for the diagnosis of microvillous inclusion disease. Int J Surg Pathol. 2012;20(3):252–6.  https://doi.org/10.1177/1066896911430959.CrossRefPubMedGoogle Scholar
  267. 267.
    Iancu TC, Mahajnah M, Manov I, Shaoul R. Microvillous inclusion disease: ultrastructural variability. Ultrastruct Pathol. 2007;31(3):173–88.  https://doi.org/10.1080/01913120701350712.CrossRefPubMedGoogle Scholar
  268. 268.
    Halac U, Lacaille F, Joly F, Hugot JP, Talbotec C, Colomb V, et al. Microvillous inclusion disease: how to improve the prognosis of a severe congenital enterocyte disorder. J Pediatr Gastroenterol Nutr. 2011;52(4):460–5.  https://doi.org/10.1097/MPG.0b013e3181fb4559.CrossRefPubMedGoogle Scholar
  269. 269.
    Wang J, Cortina G, Wu SV, Tran R, Cho JH, Tsai MJ, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med. 2006;355(3):270–80.  https://doi.org/10.1056/NEJMoa054288.CrossRefPubMedGoogle Scholar
  270. 270.
    Cortina G, Smart CN, Farmer DG, Bhuta S, Treem WR, Hill ID, et al. Enteroendocrine cell dysgenesis and malabsorption, a histopathologic and immunohistochemical characterization. Hum Pathol. 2007;38(4):570–80.  https://doi.org/10.1016/j.humpath.2006.10.014.CrossRefPubMedGoogle Scholar
  271. 271.
    Ohsie S, Gerney G, Gui D, Kahana D, Martin MG, Cortina G. A paucity of colonic enteroendocrine and/or enterochromaffin cells characterizes a subset of patients with chronic unexplained diarrhea/malabsorption. Hum Pathol. 2009;40(7):1006–14.  https://doi.org/10.1016/j.humpath.2008.12.016.CrossRefPubMedGoogle Scholar
  272. 272.
    Al Khalidi H, Kandel G, Streutker CJ. Enteropathy with loss of enteroendocrine and paneth cells in a patient with immune dysregulation: a case of adult autoimmune enteropathy. Hum Pathol. 2006;37(3):373–6.PubMedGoogle Scholar
  273. 273.
    Goulet O, Vinson C, Roquelaure B, Brousse N, Bodemer C, Cezard JP. Syndromic (phenotypic) diarrhea in early infancy. Orphanet J Rare Dis. 2008;3:6.  https://doi.org/10.1186/1750–1172–3-6.CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Hartley JL, Zachos NC, Dawood B, Donowitz M, Forman J, Pollitt RJ, et al. Mutations in TTC37 cause trichohepatoenteric syndrome (phenotypic diarrhea of infancy). Gastroenterology. 2010;138(7):2388–98, 98.e1–2.  https://doi.org/10.1053/j.gastro.2010.02.010.CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Fabre A, Bourgeois P, Coste ME, Roman C, Barlogis V, Badens C. Management of syndromic diarrhea/tricho-hepato-enteric syndrome: a review of the literature. Intractable Rare Dis Res. 2017;6(3):152–7.  https://doi.org/10.5582/irdr.2017.01040.CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J Rare Dis. 2013;8:5.  https://doi.org/10.1186/1750–1172–8-5.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Muller T, Rasool I, Heinz-Erian P, Mildenberger E, Hulstrunk C, Muller A, et al. Congenital secretory diarrhoea caused by activating germline mutations in GUCY2C. Gut. 2016;65(8):1306–13.  https://doi.org/10.1136/gutjnl-2015–309441.CrossRefPubMedGoogle Scholar
  278. 278.
    Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A, Lechner S, et al. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet. 2015;24(23):6614–23.  https://doi.org/10.1093/hmg/ddv367.CrossRefPubMedPubMedCentralGoogle Scholar
  279. 279.
    Holmberg C, Perheentupa J. Congenital Na+ diarrhea: a new type of secretory diarrhea. J Pediatr. 1985;106(1):56–61.PubMedGoogle Scholar
  280. 280.
    Booth IW, Stange G, Murer H, Fenton TR, Milla PJ. Defective jejunal brush-border Na+/H+ exchange: a cause of congenital secretory diarrhoea. Lancet. 1985;1(8437):1066–9.PubMedGoogle Scholar
  281. 281.
    Heinz-Erian P, Muller T, Krabichler B, Schranz M, Becker C, Ruschendorf F, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 2009;84(2):188–96.  https://doi.org/10.1016/j.ajhg.2009.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Sivagnanam M, Janecke AR, Muller T, Heinz-Erian P, Taylor S, Bird LM. Case of syndromic tufting enteropathy harbors SPINT2 mutation seen in congenital sodium diarrhea. Clin Dysmorphol. 2010;19(1):48.  https://doi.org/10.1097/MCD.0b013e328331de38.CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Posovszky C. Congenital intestinal diarrhoeal diseases: a diagnostic and therapeutic challenge. Best Pract Res Clin Gastroenterol. 2016;30(2):187–211.  https://doi.org/10.1016/j.bpg.2016.03.004.CrossRefPubMedGoogle Scholar
  284. 284.
    Norio R, Perheentupa J, Launiala K, Hallman N. Congenital chloride diarrhea, an autosomal recessive disease. Genetic study of 14 Finnish and 12 other families. Clin Genet. 1971;2(3):182–92.PubMedGoogle Scholar
  285. 285.
    Hoglund P, Auranen M, Socha J, Popinska K, Nazer H, Rajaram U, et al. Genetic background of congenital chloride diarrhea in high-incidence populations: Finland, Poland, and Saudi Arabia and Kuwait. Am J Hum Genet. 1998;63(3):760–8.  https://doi.org/10.1086/301998.CrossRefPubMedPubMedCentralGoogle Scholar
  286. 286.
    Wedenoja S, Pekansaari E, Hoglund P, Makela S, Holmberg C, Kere J. Update on SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat. 2011;32(7):715–22.  https://doi.org/10.1002/humu.21498.CrossRefPubMedGoogle Scholar
  287. 287.
    Hihnala S, Hoglund P, Lammi L, Kokkonen J, Ormala T, Holmberg C. Long-term clinical outcome in patients with congenital chloride diarrhea. J Pediatr Gastroenterol Nutr. 2006;42(4):369–75.  https://doi.org/10.1097/01.mpg.0000214161.37574.9a.CrossRefPubMedGoogle Scholar
  288. 288.
    Carmel R. Biomarkers of cobalamin (vitamin B-12) status in the epidemiologic setting: a critical overview of context, applications, and performance characteristics of cobalamin, methylmalonic acid, and holotranscobalamin II. Am J Clin Nutr. 2011;94(1):348s–58s.  https://doi.org/10.3945/ajcn.111.013441.CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Battat R, Kopylov U, Szilagyi A, Saxena A, Rosenblatt DS, Warner M, et al. Vitamin B12 deficiency in inflammatory bowel disease: prevalence, risk factors, evaluation, and management. Inflamm Bowel Dis. 2014;20(6):1120–8.  https://doi.org/10.1097/mib.0000000000000024.CrossRefPubMedGoogle Scholar
  290. 290.
    Ward MG, Kariyawasam VC, Mogan SB, Patel KV, Pantelidou M, Sobczynska-Malefora A, et al. Prevalence and risk factors for functional vitamin B12 deficiency in patients with Crohn’s Disease. Inflamm Bowel Dis. 2015;21(12):2839–47.  https://doi.org/10.1097/mib.0000000000000559.CrossRefPubMedGoogle Scholar
  291. 291.
    Abd-el-Gawa G, Abrahamsson K, Norlen L, Hjalmas K, Hanson E. Vitamin B12 and folate after 5–12 years of continent ileal urostomy (Kock reservoir) in children and adolescents. Eur Urol. 2002;41(2):199–205.PubMedGoogle Scholar
  292. 292.
    Foroozan P, Trier JS. Mucosa of the small intestine in pernicious anemia. N Engl J Med. 1967;277(11):553–9.  https://doi.org/10.1056/nejm196709142771101.CrossRefPubMedGoogle Scholar
  293. 293.
    Pena AS, Truelove SC, Callender ST, Whitehead R. Mucosal abnormalities and disaccharidases in pernicious anemia. Gut. 1970;11(12):1066.PubMedGoogle Scholar
  294. 294.
    Dawson DW. Partial villous atrophy in nutritional megaloblastic anaemia corrected by folic acid therapy. J Clin Pathol. 1971;24(2):131–5.PubMedPubMedCentralGoogle Scholar
  295. 295.
    Bianchi A, Chipman DW, Dreskin A, Rosensweig NS. Nutritional folic acid deficiency with megaloblastic changes in the small-bowel epithelium. N Engl J Med. 1970;282(15):859–61.  https://doi.org/10.1056/nejm197004092821510.CrossRefPubMedGoogle Scholar
  296. 296.
    Hermos JA, Adams WH, Liu YK, Sullivan LW, Trier JS. Mucosa of the small intestine in folate-deficient alcoholics. Ann Intern Med. 1972;76(6):957–65.PubMedGoogle Scholar
  297. 297.
    Lizarraga A, Cuerda C, Junca E, Breton I, Camblor M, Velasco C, et al. Atrophy of the intestinal villi in a post-gastrectomy patient with severe iron deficiency anemia. Nutr Hosp. 2009;24(5):618–21.PubMedGoogle Scholar
  298. 298.
    Kambe T, Fukue K, Ishida R, Miyazaki S. Overview of inherited zinc deficiency in infants and children. J Nutr Sci Vitaminol. 2015;61(Suppl):S44–6.  https://doi.org/10.3177/jnsv.61.S44.CrossRefPubMedGoogle Scholar
  299. 299.
    Shah KN, Yan AC. Acquired zinc deficiency acrodermatitis associated with nephrotic syndrome. Pediatr Dermatol. 2008;25(1):56–9.  https://doi.org/10.1111/j.1525–1470.2007.00583.x.CrossRefPubMedGoogle Scholar
  300. 300.
    McClain C, Soutor C, Zieve L. Zinc deficiency: a complication of Crohn’s disease. Gastroenterology. 1980;78(2):272–9.Google Scholar
  301. 301.
    Krasovec M, Frenk E. Acrodermatitis enteropathica secondary to Crohn’s disease. Dermatology. 1996;193(4):361–3.PubMedGoogle Scholar
  302. 302.
    Kasana S, Din J, Maret W. Genetic causes and gene-nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol. 2015;29:47–62.  https://doi.org/10.1016/j.jtemb.2014.10.003.CrossRefPubMedGoogle Scholar
  303. 303.
    Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71(1):66–73.  https://doi.org/10.1086/341125.CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Kury S, Dreno B, Bezieau S, Giraudet S, Kharfi M, Kamoun R, et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet. 2002;31(3):239–40.  https://doi.org/10.1038/ng913.CrossRefPubMedGoogle Scholar
  305. 305.
    Maverakis E, Fung MA, Lynch PJ, Draznin M, Michael DJ, Ruben B, et al. Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol. 2007;56(1):116–24.  https://doi.org/10.1016/j.jaad.2006.08.015.CrossRefPubMedGoogle Scholar
  306. 306.
    Braun OH, Heilmann K, Pauli W, Rossner JA, Bergmann KE. Acrodermatitis enteropathica: recent findings concerning clinical features, pathogenesis, diagnosis and therapy. Eur J Pediatr. 1976;121(4):247–61.PubMedGoogle Scholar
  307. 307.
    Lombeck I, von Bassewitz DB, Becker K, Tinschmann P, Kastner H. Ultrastructural findings in acrodermatitis enteropathica. Pediatr Res. 1974;8(2):82–8.  https://doi.org/10.1203/00006450–197402000–00003.CrossRefPubMedGoogle Scholar
  308. 308.
    Kelly R, Davidson GP, Townley RR, Campbell PE. Reversible intestinal mucosal abnormality in acrodermatitis enteropathica. Arch Dis Child. 1976;51(3):219–22.PubMedPubMedCentralGoogle Scholar
  309. 309.
    Chowanadisai W, Lonnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281(51):39699–707.  https://doi.org/10.1074/jbc.M605821200.CrossRefPubMedGoogle Scholar
  310. 310.
    Owen RG, Treon SP, Al-Katib A, Fonseca R, Greipp PR, McMaster ML, et al. Clinicopathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30(2):110–5.  https://doi.org/10.1053/sonc.2003.50082.CrossRefPubMedGoogle Scholar
  311. 311.
    Gertz MA. Waldenstrom macroglobulinemia: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92(2):209–17.  https://doi.org/10.1002/ajh.24557.CrossRefPubMedGoogle Scholar
  312. 312.
    Wang H, Chen Y, Li F, Delasalle K, Wang J, Alexanian R, et al. Temporal and geographic variations of Waldenstrom macroglobulinemia incidence: a large population-based study. Cancer. 2012;118(15):3793–800.  https://doi.org/10.1002/cncr.26627.CrossRefPubMedGoogle Scholar
  313. 313.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.  https://doi.org/10.1056/NEJMoa1200710.CrossRefPubMedGoogle Scholar
  314. 314.
    Kapoor P, Paludo J, Ansell SM. Waldenstrom macroglobulinemia: familial predisposition and the role of genomics in prognosis and treatment selection. Curr Treat Options in Oncol. 2016;17(3):16.  https://doi.org/10.1007/s11864–016–0391–7.CrossRefGoogle Scholar
  315. 315.
    Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.  https://doi.org/10.1182/blood-2013–09–525808.CrossRefPubMedGoogle Scholar
  316. 316.
    Bedine MS, Yardley JH, Elliott HL, Banwell JG, Hendrix TR. Intestinal involvement in Waldenstrom’s macroglobulinemia. Gastroenterology. 1973;65(2):308–15.PubMedGoogle Scholar
  317. 317.
    Veloso FT, Fraga J, Saleiro JV. Macroglobulinemia and small intestinal disease. A case report with review of the literature. J Clin Gastroenterol. 1988;10(5):546–50.PubMedGoogle Scholar
  318. 318.
    Pruzanski W, Warren RE, Goldie JH, Katz A. Malabsorption syndrome with infiltration of the intestinal wall by extracellular monoclonal macroglobulin. Am J Med. 1973;54(6):811–8.PubMedGoogle Scholar
  319. 319.
    Harris M, Burton IE, Scarffe JH. Macroglobulinaemia and intestinal lymphangiectasia: a rare association. J Clin Pathol. 1983;36(1):30–6.PubMedPubMedCentralGoogle Scholar
  320. 320.
    Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 3–1990. A 66-year-old woman with Waldenstrom’s macroglobulinemia, diarrhea, anemia, and persistent gastrointestinal bleeding. N Engl J Med. 1990;322(3):183–92.  https://doi.org/10.1056/nejm199001183220308.Google Scholar
  321. 321.
    Pratz KW, Dingli D, Smyrk TC, Lust JA. Intestinal lymphangiectasia with protein-losing enteropathy in Waldenstrom macroglobulinemia. Medicine. 2007;86(4):210–4.  https://doi.org/10.1097/MD.0b013e31812e5242.CrossRefPubMedGoogle Scholar
  322. 322.
    Gertz MA, Kyle RA, Noel P. Primary systemic amyloidosis: a rare complication of immunoglobulin M monoclonal gammopathies and Waldenstrom’s macroglobulinemia. J Clin Oncol. 1993;11(5):914–20.  https://doi.org/10.1200/jco.1993.11.5.914.CrossRefPubMedGoogle Scholar
  323. 323.
    Vignes S, Bellanger J. Primary intestinal lymphangiectasia (Waldmann’s disease). Orphanet J Rare Dis. 2008;3:5.  https://doi.org/10.1186/1750–1172–3-5.CrossRefPubMedPubMedCentralGoogle Scholar
  324. 324.
    Ingle SB, Hinge Ingle CR. Primary intestinal lymphangiectasia: minireview. World J Clin Cases. 2014;2(10):528–33.  https://doi.org/10.12998/wjcc.v2.i10.528.CrossRefPubMedPubMedCentralGoogle Scholar
  325. 325.
    Femppel J, Lux G, Kaduk B, Roesch W. Functional lymphangiectasia of the duodenal mucosa. Endoscopy. 1978;10(1):44–6.  https://doi.org/10.1055/s-0028–1098260.CrossRefPubMedGoogle Scholar
  326. 326.
    Patel AS, DeRidder PH. Endoscopic appearance and significance of functional lymphangiectasia of the duodenal mucosa. Gastrointest Endosc. 1990;36(4):376–8.PubMedGoogle Scholar
  327. 327.
    Kim JH, Bak YT, Kim JS, Seol SY, Shin BK, Kim HK. Clinical significance of duodenal lymphangiectasia incidentally found during routine upper gastrointestinal endoscopy. Endoscopy. 2009;41(6):510–5.  https://doi.org/10.1055/s-0029–1214611.CrossRefPubMedGoogle Scholar
  328. 328.
    Bellutti M, Monkemuller K, Fry LC, Dombrowski F, Malfertheiner P. Characterization of yellow plaques found in the small bowel during double-balloon enteroscopy. Endoscopy. 2007;39(12):1059–63.  https://doi.org/10.1055/s-2007–966824.CrossRefPubMedGoogle Scholar
  329. 329.
    Macdonald J, Porter V, Scott NW, McNamara D. Small bowel lymphangiectasia and angiodysplasia: a positive association; novel clinical marker or shared pathophysiology? J Clin Gastroenterol. 2010;44(9):610–4.  https://doi.org/10.1097/MCG.0b013e3181dd9c3f.CrossRefPubMedGoogle Scholar
  330. 330.
    Waldmann TA, Steinfeld JL, Dutcher TF, Davidson JD, Gordon RS Jr. The role of the gastrointestinal system in “idiopathic hypoproteinemia”. Gastroenterology. 1961;41:197–207.PubMedGoogle Scholar
  331. 331.
    Alshikho MJ, Talas JM, Noureldine SI, Zazou S, Addas A, Kurabi H, et al. Intestinal lymphangiectasia: insights on management and literature review. Am J Case Rep. 2016;17:512–22.PubMedPubMedCentralGoogle Scholar
  332. 332.
    Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41(12):1272–4.  https://doi.org/10.1038/ng.484.CrossRefPubMedGoogle Scholar
  333. 333.
    Oh TG, Chung JW, Kim HM, Han SJ, Lee JS, Park JY, et al. Primary intestinal lymphangiectasia diagnosed by capsule endoscopy and double balloon enteroscopy. World J Gastrointest Endosc. 2011;3(11):235–40.  https://doi.org/10.4253/wjge.v3.i11.235.CrossRefPubMedPubMedCentralGoogle Scholar
  334. 334.
    Parfitt AM. Familial neonatal hypoproteinaemia with exudative enteropathy and intestinal lymphangiectasis. Arch Dis Child. 1966;41(215):54–62.PubMedPubMedCentralGoogle Scholar
  335. 335.
    Wen J, Tang Q, Wu J, Wang Y, Cai W. Primary intestinal lymphangiectasia: four case reports and a review of the literature. Dig Dis Sci. 2010;55(12):3466–72.  https://doi.org/10.1007/s10620–010–1161–1.CrossRefPubMedGoogle Scholar
  336. 336.
    Syed U, Ching Companioni RA, Alkhawam H, Walfish A. Amyloidosis of the gastrointestinal tract and the liver: clinical context, diagnosis and management. Eur J Gastroenterol Hepatol. 2016;28(10):1109–21.  https://doi.org/10.1097/meg.0000000000000695.CrossRefPubMedGoogle Scholar
  337. 337.
    Desport E, Bridoux F, Sirac C, Delbes S, Bender S, Fernandez B, et al. Al amyloidosis. Orphanet J Rare Dis. 2012;7:54.  https://doi.org/10.1186/1750–1172–7-54.CrossRefPubMedPubMedCentralGoogle Scholar
  338. 338.
    Said SM, Grogg KL, Smyrk TC. Gastric amyloidosis: clinicopathological correlations in 79 cases from a single institution. Hum Pathol. 2015;46(4):491–8.  https://doi.org/10.1016/j.humpath.2014.12.009.CrossRefPubMedGoogle Scholar
  339. 339.
    Tada S, Iida M, Iwashita A, Matsui T, Fuchigami T, Yamamoto T, et al. Endoscopic and biopsy findings of the upper digestive tract in patients with amyloidosis. Gastrointest Endosc. 1990;36(1):10–4.PubMedGoogle Scholar
  340. 340.
    Ebert EC, Nagar M. Gastrointestinal manifestations of amyloidosis. Am J Gastroenterol. 2008;103(3):776–87.  https://doi.org/10.1111/j.1572–0241.2007.01669.x.CrossRefPubMedGoogle Scholar
  341. 341.
    Sattianayagam PT, Gibbs SD, Rowczenio D, Pinney JH, Wechalekar AD, Gilbertson JA, et al. Hereditary lysozyme amyloidosis—phenotypic heterogeneity and the role of solid organ transplantation. J Intern Med. 2012;272(1):36–44.  https://doi.org/10.1111/j.1365–2796.2011.02470.x.CrossRefGoogle Scholar
  342. 342.
    Steen L, Ek B. Familial amyloidosis with polyneuropathy. A long-term follow-up of 21 patients with special reference to gastrointestinal symptoms. Acta Med Scand. 1983;214(5):387–97.PubMedGoogle Scholar
  343. 343.
    Jimenez RE, Price DA, Pinkus GS, Owen WF Jr, Lazarus JM, Kay J, et al. Development of gastrointestinal beta2-microglobulin amyloidosis correlates with time on dialysis. Am J Surg Pathol. 1998;22(6):729–35.PubMedGoogle Scholar
  344. 344.
    Gilat T, Spiro HM. Amyloidosis and the gut. Am J Dig Dis. 1968;13(7):619–33.PubMedGoogle Scholar
  345. 345.
    Herskovic T, Bartholomew LG, Green PA. Amyloidosis and Malabsorption Syndrome. Arch Intern Med. 1964;114:629–33.PubMedGoogle Scholar
  346. 346.
    Hayman SR, Lacy MQ, Kyle RA, Gertz MA. Primary systemic amyloidosis: a cause of malabsorption syndrome. Am J Med. 2001;111(7):535–40.PubMedGoogle Scholar
  347. 347.
    Peny MO, Debongnie JC, Haot J, Van Gossum A. Localized amyloid tumor in small bowel. Dig Dis Sci. 2000;45(9):1850–3.PubMedGoogle Scholar
  348. 348.
    Goteri G, Ranaldi R, Pileri SA, Bearzi I. Localized amyloidosis and gastrointestinal lymphoma: a rare association. Histopathology. 1998;32(4):348–55.PubMedGoogle Scholar
  349. 349.
    Tada S, Iida M, Yao T, Kawakubo K, Yao T, Okada M, et al. Endoscopic features in amyloidosis of the small intestine: clinical and morphologic differences between chemical types of amyloid protein. Gastrointest Endosc. 1994;40(1):45–50.PubMedGoogle Scholar
  350. 350.
    Tada S, Iida M, Yao T, Kawakubo K, Yao T, Fuchigami T, et al. Gastrointestinal amyloidosis: radiologic features by chemical types. Radiology. 1994;190(1):37–42.  https://doi.org/10.1148/radiology.190.1.8259424.CrossRefPubMedGoogle Scholar
  351. 351.
    Kim SH, Han JK, Lee KH, Won HJ, Kim KW, Kim JS, et al. Abdominal amyloidosis: spectrum of radiological findings. Clin Radiol. 2003;58(8):610–20.PubMedGoogle Scholar
  352. 352.
    Yoshimatsu S, Ando Y, Terazaki H, Sakashita N, Tada S, Yamashita T, et al. Endoscopic and pathological manifestations of the gastrointestinal tract in familial amyloidotic polyneuropathy type I (Met30). J Intern Med. 1998;243(1):65–72.PubMedGoogle Scholar
  353. 353.
    Chandan VS, Shah SS, Lam-Himlin DM, Petris GD, Mereuta OM, Dogan A, et al. Globular hepatic amyloid is highly sensitive and specific for LECT2 amyloidosis. Am J Surg Pathol. 2015;39(4):558–64.  https://doi.org/10.1097/pas.0000000000000373.CrossRefPubMedGoogle Scholar
  354. 354.
    Kebbel A, Rocken C. Immunohistochemical classification of amyloid in surgical pathology revisited. Am J Surg Pathol. 2006;30(6):673–83.PubMedGoogle Scholar
  355. 355.
    Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR 3rd, Dogan A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood. 2009;114(24):4957–9.  https://doi.org/10.1182/blood-2009–07–230722.CrossRefPubMedGoogle Scholar
  356. 356.
    Hobbs CM, Burch DM, Sobin LH. Elastosis and elastofibromatous change in the gastrointestinal tract: a clinicopathologic study of 13 cases and a review of the literature. Am J Clin Pathol. 2004;122(2):232–7.  https://doi.org/10.1309/lbgt-cg1q-cd96-m3nf.CrossRefPubMedGoogle Scholar
  357. 357.
    Ishida M, Iwai M, Kagotani A, Iwamoto N, Okabe H. Elastofibromatous change of the intestine: report of four lesions from three patients with review of the literature. Int J Clin Exp Pathol. 2014;7(5):2291–7.PubMedPubMedCentralGoogle Scholar
  358. 358.
    Caubet JC, Nowak-Wegrzyn A. Current understanding of the immune mechanisms of food protein-induced enterocolitis syndrome. Expert Rev Clin Immunol. 2011;7(3):317–27.  https://doi.org/10.1586/eci.11.13.CrossRefPubMedGoogle Scholar
  359. 359.
    Turnbull JL, Adams HN, Gorard DA. Review article: the diagnosis and management of food allergy and food intolerances. Aliment Pharmacol Ther. 2015;41(1):3–25.  https://doi.org/10.1111/apt.12984.CrossRefPubMedGoogle Scholar
  360. 360.
    Mehr S, Kakakios A, Frith K, Kemp AS. Food protein-induced enterocolitis syndrome: 16-year experience. Pediatrics. 2009;123(3):e459–64.  https://doi.org/10.1542/peds.2008–2029.CrossRefPubMedGoogle Scholar
  361. 361.
    Katz Y, Goldberg MR, Rajuan N, Cohen A, Leshno M. The prevalence and natural course of food protein-induced enterocolitis syndrome to cow’s milk: a large-scale, prospective population-based study. J Allergy Clin Immunol. 2011;127(3):647–53. e1–3.  https://doi.org/10.1016/j.jaci.2010.12.1105.CrossRefPubMedGoogle Scholar
  362. 362.
    Guandalini S, Newland C. Differentiating food allergies from food intolerances. Curr Gastroenterol Rep. 2011;13(5):426–34.  https://doi.org/10.1007/s11894–011–0215–7.CrossRefPubMedGoogle Scholar
  363. 363.
    Iyngkaran N, Robinson MJ, Prathap K, Sumithran E, Yadav M. Cows’ milk protein-sensitive enteropathy. Combined clinical and histological criteria for diagnosis. Arch Dis Child. 1978;53(1):20–6.PubMedPubMedCentralGoogle Scholar
  364. 364.
    Kokkonen J, Haapalahti M, Laurila K, Karttunen TJ, Maki M. Cow’s milk protein-sensitive enteropathy at school age. J Pediatr. 2001;139(6):797–803.  https://doi.org/10.1067/mpd.2001.118882.CrossRefPubMedGoogle Scholar
  365. 365.
    Iyngkaran N, Yadav M, Boey CG, Kamath KR, Lam KL. Causative effect of cow’s milk protein and soy protein on progressive small bowel mucosal damage. J Gastroenterol Hepatol. 1989;4(2):127–36.PubMedGoogle Scholar
  366. 366.
    Halpin TC, Byrne WJ, Ament ME. Colitis, persistent diarrhea, and soy protein intolerance. J Pediatr. 1977;91(3):404–7.PubMedGoogle Scholar
  367. 367.
    Ament ME, Rubin CE. Soy protein—another cause of the flat intestinal lesion. Gastroenterology. 1972;62(2):227–34.PubMedGoogle Scholar
  368. 368.
    Fontaine JL, Navarro J. Small intestinal biopsy in cows milk protein allergy in infancy. Arch Dis Child. 1975;50(5):357–62.PubMedPubMedCentralGoogle Scholar
  369. 369.
    Kuitunen P, Visakorpi JK, Savilahti E, Pelkonen P. Malabsorption syndrome with cow’s milk intolerance. Clinical findings and course in 54 cases. Arch Dis Child. 1975;50(5):351–6.PubMedPubMedCentralGoogle Scholar
  370. 370.
    Rosekrans PC, Meijer CJ, Cornelisse CJ, van der Wal AM, Lindeman J. Use of morphometry and immunohistochemistry of small intestinal biopsy specimens in the diagnosis of food allergy. J Clin Pathol. 1980;33(2):125–30.PubMedPubMedCentralGoogle Scholar
  371. 371.
    Phillips AD, Rice SJ, France NE, Walker-Smith JA. Small intestinal intraepithelial lymphocyte levels in cow’s milk protein intolerance. Gut. 1979;20(6):509–12.PubMedPubMedCentralGoogle Scholar
  372. 372.
    Walker-Smith J, Harrison M, Kilby A, Phillips A, France N. Cows’ milk-sensitive enteropathy. Arch Dis Child. 1978;53(5):375–80.PubMedPubMedCentralGoogle Scholar
  373. 373.
    Vandenplas Y, Koletzko S, Isolauri E, Hill D, Oranje AP, Brueton M, et al. Guidelines for the diagnosis and management of cow’s milk protein allergy in infants. Arch Dis Child. 2007;92(10):902–8.  https://doi.org/10.1136/adc.2006.110999.CrossRefPubMedPubMedCentralGoogle Scholar
  374. 374.
    Walker-Smith JA. Cow milk-sensitive enteropathy: predisposing factors and treatment. J Pediatr. 1992;121(5 Pt 2):S111–5.PubMedGoogle Scholar
  375. 375.
    Schrander JJ, Oudsen S, Forget PP, Kuijten RH. Follow up study of cow’s milk protein intolerant infants. Eur J Pediatr. 1992;151(10):783–5.PubMedGoogle Scholar
  376. 376.
    Williams CD. Kwashiorkor. J Am Med Assoc. 1953;153(14):1280–5.PubMedGoogle Scholar
  377. 377.
    Liu T, Howard RM, Mancini AJ, Weston WL, Paller AS, Drolet BA, et al. Kwashiorkor in the United States: fad diets, perceived and true milk allergy, and nutritional ignorance. Arch Dermatol. 2001;137(5):630–6.PubMedGoogle Scholar
  378. 378.
    Tierney EP, Sage RJ, Shwayder T. Kwashiorkor from a severe dietary restriction in an 8-month infant in suburban Detroit, Michigan: case report and review of the literature. Int J Dermatol. 2010;49(5):500–6.  https://doi.org/10.1111/j.1365–4632.2010.04253.x.CrossRefPubMedGoogle Scholar
  379. 379.
    Amadi B, Fagbemi AO, Kelly P, Mwiya M, Torrente F, Salvestrini C, et al. Reduced production of sulfated glycosaminoglycans occurs in Zambian children with kwashiorkor but not marasmus. Am J Clin Nutr. 2009;89(2):592–600.  https://doi.org/10.3945/ajcn.2008.27092.CrossRefPubMedGoogle Scholar
  380. 380.
    William JH, Tapper EB, Yee EU, Robson SC. Secondary kwashiorkor: a rare complication of gastric bypass surgery. Am J Med. 2015;128(5):e1–2.  https://doi.org/10.1016/j.amjmed.2014.12.002.CrossRefPubMedGoogle Scholar
  381. 381.
    Stanfield JP, Hutt MS, Tunnicliffe R. Intestinal biopsy in kwashiorkor. Lancet. 1965;2(7411):519–23.PubMedGoogle Scholar
  382. 382.
    Shiner M, Redmond AO, Hansen JD. The jejunal mucosa in protein-energy malnutrition. A clinical, histological, and ultrastructural study. Exp Mol Pathol. 1973;19(1):61–78.PubMedGoogle Scholar
  383. 383.
    Cook GC, Lee FD. The jejunum after kwashiorkor. Lancet. 1966;2(7476):1263–7.PubMedGoogle Scholar
  384. 384.
    Waterlow JC. Intensive nursing care of kwashiorkor in Malawi. Acta Paediatr. 2000;89(2):138–40.PubMedGoogle Scholar
  385. 385.
    Schulzke JD, Troger H, Amasheh M. Disorders of intestinal secretion and absorption. Best Pract Res Clin Gastroenterol. 2009;23(3):395–406.  https://doi.org/10.1016/j.bpg.2009.04.005.CrossRefPubMedGoogle Scholar
  386. 386.
    Kuokkanen M, Kokkonen J, Enattah NS, Ylisaukko-Oja T, Komu H, Varilo T, et al. Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency. Am J Hum Genet. 2006;78(2):339–44.  https://doi.org/10.1086/500053.CrossRefPubMedGoogle Scholar
  387. 387.
    Diekmann L, Pfeiffer K, Naim HY. Congenital lactose intolerance is triggered by severe mutations on both alleles of the lactase gene. BMC Gastroenterol. 2015;15:36.  https://doi.org/10.1186/s12876–015–0261-y.CrossRefPubMedPubMedCentralGoogle Scholar
  388. 388.
    Ritz V, Alfalah M, Zimmer KP, Schmitz J, Jacob R, Naim HY. Congenital sucrase-isomaltase deficiency because of an accumulation of the mutant enzyme in the endoplasmic reticulum. Gastroenterology. 2003;125(6):1678–85.PubMedGoogle Scholar
  389. 389.
    Sander P, Alfalah M, Keiser M, Korponay-Szabo I, Kovacs JB, Leeb T, et al. Novel mutations in the human sucrase-isomaltase gene (SI) that cause congenital carbohydrate malabsorption. Hum Mutat. 2006;27(1):119.  https://doi.org/10.1002/humu.9392.CrossRefPubMedGoogle Scholar
  390. 390.
    Gericke B, Amiri M, Scott CR, Naim HY. Molecular pathogenicity of novel sucrase-isomaltase mutations found in congenital sucrase-isomaltase deficiency patients. Biochim Biophys Acta. 2017;1863(3):817–26.  https://doi.org/10.1016/j.bbadis.2016.12.017.CrossRefGoogle Scholar
  391. 391.
    Nichols BL, Avery SE, Karnsakul W, Jahoor F, Sen P, Swallow DM, et al. Congenital maltase-glucoamylase deficiency associated with lactase and sucrase deficiencies. J Pediatr Gastroenterol Nutr. 2002;35(4):573–9.PubMedGoogle Scholar
  392. 392.
    Wright EM, Turk E, Martin MG. Molecular basis for glucose-galactose malabsorption. Cell Biochem Biophys. 2002;36(2–3):115–21.  https://doi.org/10.1385/cbb:36:2–3:115.CrossRefPubMedGoogle Scholar
  393. 393.
    Santer R, Groth S, Kinner M, Dombrowski A, Berry GT, Brodehl J, et al. The mutation spectrum of the facilitative glucose transporter gene SLC2A2 (GLUT2) in patients with Fanconi-Bickel syndrome. Hum Genet. 2002;110(1):21–9.  https://doi.org/10.1007/s00439–001–0638–6.CrossRefPubMedGoogle Scholar
  394. 394.
    Gibson PR, Newnham E, Barrett JS, Shepherd SJ, Muir JG. Review article: fructose malabsorption and the bigger picture. Aliment Pharmacol Ther. 2007;25(4):349–63.  https://doi.org/10.1111/j.1365–2036.2006.03186.x.CrossRefPubMedGoogle Scholar
  395. 395.
    Johnston I, Nolan J, Pattni SS, Walters JR. New insights into bile acid malabsorption. Curr Gastroenterol Rep. 2011;13(5):418–25.  https://doi.org/10.1007/s11894–011–0219–3.CrossRefPubMedGoogle Scholar
  396. 396.
    Wilcox C, Turner J, Green J. Systematic review: the management of chronic diarrhoea due to bile acid malabsorption. Aliment Pharmacol Ther. 2014;39(9):923–39.  https://doi.org/10.1111/apt.12684.CrossRefPubMedGoogle Scholar
  397. 397.
    Fromm H, Malavolti M. Bile acid-induced diarrhoea. Clin Gastroenterol. 1986;15(3):567–82.PubMedGoogle Scholar
  398. 398.
    Vitek L. Bile acid malabsorption in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(2):476–83.  https://doi.org/10.1097/mib.0000000000000193.CrossRefPubMedGoogle Scholar
  399. 399.
    Gracie DJ, Kane JS, Mumtaz S, Scarsbrook AF, Chowdhury FU, Ford AC. Prevalence of, and predictors of, bile acid malabsorption in outpatients with chronic diarrhea. Neurogastroenterol Motil. 2012;24(11):983–e538.  https://doi.org/10.1111/j.1365–2982.2012.01953.x.CrossRefPubMedGoogle Scholar
  400. 400.
    Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest. 1997;99(8):1880–7.  https://doi.org/10.1172/jci119355.CrossRefPubMedPubMedCentralGoogle Scholar
  401. 401.
    Walters JR, Tasleem AM, Omer OS, Brydon WG, Dew T, le Roux CW. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin Gastroenterol Hepatol. 2009;7(11):1189–94.  https://doi.org/10.1016/j.cgh.2009.04.024.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Laboratory and Medical PathologyMayo ClinicRochesterUSA

Personalised recommendations