Calcium Stone: Pathophysiology, Prevention, and Medical Management
- 1 Citations
- 527 Downloads
Abstract
Calcium stones such as calcium oxalate and calcium phosphate represent the most frequent type of stones encountered in stone-forming patients. Underlying medical conditions such as hyperparathyroidism, diabetes, hypertension, obesity, and conditions that promote hypercalciuria, hyperoxaluria, and hypocitraturia have been recognized as risk factors for stone recurrence. Genetic links to stone recurrence have been proposed in newer publications. Diagnosis of calcium stone can be made with varying sensitivity and specificity by kidney ultrasound; radiography of the kidney, ureter, and bladder; and non-contrast computed tomography. Many of these stones may pass spontaneously. Medical therapy for stone expulsion such as alpha-blocker may be useful in certain situations. Depending on the size and location of calcium stone, surgical treatment can be instigated for stone removal. Stone analysis should be done in all stone-forming patients, along with basic investigations to identify possible underlying medical problems. Those with high likelihood of stone recurrence should undergo further metabolic investigations so that specific advice can be given to avoid stone recurrence.
Nephrolithiasis is an ancient disease that has been described in a 5000-year-old mummy by an English archeologist, E. Smith, in 1901. Treatment for kidney stones was mentioned throughout the ages, in ancient India’s writing of Sushruta, Hippocrates in Greece, and Rhazes and Albucasis in Cordoba during the tenth–eleventh century, before being transferred to Europe during the Renaissance period (Tefekli and Cezayirli, ScientificWorldJournal 2013:423964, 2013).
Keywords
Calcium oxalate Calcium phosphate Hyperoxaluria ObesityReferences
- 1.Tefekli A, Cezayirli F. The history of urinary stones: in parallel with civilization. ScientificWorldJournal. 2013;2013:423964.PubMedPubMedCentralGoogle Scholar
- 2.Scales CD Jr, et al. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Mandel NS, Mandel IC, Kolbach-Mandel AM. Accurate stone analysis: the impact on disease diagnosis and treatment. Urolithiasis. 2017;45(1):3–9.PubMedCrossRefGoogle Scholar
- 4.Robertson WG. Stone formation in the Middle Eastern Gulf States: a review. Arab J Urol. 2012;10(3):265–72.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Yang X, et al. Multivariate analyses of urinary calculi composition: a 13-year single-center study. J Clin Lab Anal. 2016;30(6):873–9.PubMedCrossRefGoogle Scholar
- 6.Bergsland KJ, et al. Influence of gender and age on calcium oxalate crystal growth inhibition by urine from relatives of stone forming patients. J Urol. 2002;167(6):2372–6.PubMedCrossRefGoogle Scholar
- 7.Lieske JC, et al. Stone composition as a function of age and sex. Clin J Am Soc Nephrol. 2014;9(12):2141–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Mente A, et al. Ethnic differences in relative risk of idiopathic calcium nephrolithiasis in North America. J Urol. 2007;178(5):1992–7. discussion 1997.PubMedCrossRefGoogle Scholar
- 9.Taylor EN, Curhan GC. Differences in 24-hour urine composition between black and white women. J Am Soc Nephrol. 2007;18(2):654–9.PubMedCrossRefGoogle Scholar
- 10.Polat EC, et al. Relationship between calcium stone disease and metabolic syndrome. Urol J. 2015;12(6):2391–5.PubMedGoogle Scholar
- 11.Strohmaier WL. Economics of stone disease/treatment. Arab J Urol. 2012;10(3):273–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 12.Guerra A, et al. Calcium urolithiasis course in young stone formers is influenced by the strength of family history: results from a retrospective study. Urolithiasis. 2017;45(6):525–33.PubMedCrossRefGoogle Scholar
- 13.Hopp K, et al. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol. 2015;26(10):2559–70.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Sayer JA. Progress in understanding the genetics of calcium-containing nephrolithiasis. J Am Soc Nephrol. 2017;28(3):748–59.PubMedCrossRefGoogle Scholar
- 15.Yasui T, et al. Pathophysiology-based treatment of urolithiasis. Int J Urol. 2017;24(1):32–8.PubMedCrossRefGoogle Scholar
- 16.Gambaro G, Trinchieri A. Recent advances in managing and understanding nephrolithiasis/nephrocalcinosis. F1000Res. 2016;5:F1000 Faculty Rev-695.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Eisner BH, et al. The effects of ambient temperature, humidity and season of year on urine composition in patients with nephrolithiasis. BJU Int. 2012;110(11 Pt C):E1014–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Bao Y, Wei Q. Water for preventing urinary stones. Cochrane Database Syst Rev. 2012;(6):CD004292.Google Scholar
- 19.Massey LK. Food oxalate: factors affecting measurement, biological variation, and bioavailability. J Am Diet Assoc. 2007;107(7):1191–4.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Asplin JR. The management of patients with enteric hyperoxaluria. Urolithiasis. 2016;44(1):33–43.PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Gkentzis A, et al. Urolithiasis in inflammatory bowel disease and bariatric surgery. World J Nephrol. 2016;5(6):538–46.PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Christie PM, Knight GS, Hill GL. Comparison of relative risks of urinary stone formation after surgery for ulcerative colitis: conventional ileostomy vs. J-pouch. A comparative study. Dis Colon Rectum. 1996;39(1):50–4.PubMedCrossRefGoogle Scholar
- 23.Matlaga BR, et al. Effect of gastric bypass surgery on kidney stone disease. J Urol. 2009;181(6):2573–7.PubMedCrossRefGoogle Scholar
- 24.Pachaly MA, et al. Effects of non-pharmacological interventions on urinary citrate levels: a systematic review and meta-analysis. Nephrol Dial Transplant. 2016;31(8):1203–11.PubMedCrossRefGoogle Scholar
- 25.Shang Y-F, et al. Concave urinary crystallines: direct evidence of calcium oxalate crystals dissolution by citrate in vivo. Bioinorg Chem Appl. 2013;2013:637617.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Spivacow FR, et al. Kidney stones: composition, frequency and relation to metabolic diagnosis. Medicina (B Aires). 2016;76(6):343–8.Google Scholar
- 27.Verdelli C, Corbetta S. MECHANISMS IN ENDOCRINOLOGY: kidney involvement in patients with primary hyperparathyroidism: an update on clinical and molecular aspects. Eur J Endocrinol. 2017;176(1):R39–52.PubMedCrossRefGoogle Scholar
- 28.Robinson BW, McLemore TL, Crystal RG. Gamma interferon is spontaneously released by alveolar macrophages and lung T lymphocytes in patients with pulmonary sarcoidosis. J Clin Invest. 1985;75(5):1488–95.PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Conron M, Young C, Beynon HL. Calcium metabolism in sarcoidosis and its clinical implications. Rheumatology (Oxford). 2000;39(7):707–13.CrossRefGoogle Scholar
- 30.Sorensen MD. Calcium intake and urinary stone disease. Transl Androl Urol. 2014;3(3):235–40.PubMedPubMedCentralGoogle Scholar
- 31.Ogden CL, et al. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806–14.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.DiBianco JM, Jarrett TW, Mufarrij P. Metabolic syndrome and nephrolithiasis risk: should the medical management of nephrolithiasis include the treatment of metabolic syndrome? Rev Urol. 2015;17(3):117–28.PubMedPubMedCentralGoogle Scholar
- 34.Nigro E, et al. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014;2014:658913.PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Grover PK, Ryall RL, Marshall VR. Calcium oxalate crystallization in urine: role of urate and glycosaminoglycans. Kidney Int. 1992;41(1):149–54.PubMedCrossRefGoogle Scholar
- 36.Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73(4):489–96.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Arowojolu O, Goldfarb DS. Treatment of calcium nephrolithiasis in the patient with hyperuricosuria. J Nephrol. 2014;27(6):601–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Curhan GC, et al. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med. 1997;126(7):497–504.PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Borghi L, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346(2):77–84.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Nouvenne A, et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am J Clin Nutr. 2010;91(3):565–70.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Afsar B, et al. The role of sodium intake in nephrolithiasis: epidemiology, pathogenesis, and future directions. Eur J Intern Med. 2016;35:16–9.PubMedCrossRefGoogle Scholar
- 42.Ferraro PM, et al. Dietary protein and potassium, diet-dependent net acid load, and risk of incident kidney stones. Clin J Am Soc Nephrol. 2016;11(10):1834–44.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Escribano J, et al. Dietary interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev. 2014;(2):Cd006022.Google Scholar
- 44.Jackson RD, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Kozyrakis D, et al. Do calcium supplements predispose to urolithiasis? Curr Urol Rep. 2017;18(3):17.PubMedCrossRefGoogle Scholar
- 46.Ferraro PM, et al. Vitamin D intake and the risk of incident kidney stones. J Urol. 2017;197(2):405–10.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Malihi Z, et al. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr. 2016;104(4):1039–51.PubMedCrossRefGoogle Scholar
- 48.Bjelakovic G, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. 2014;(1):Cd007470.Google Scholar
- 49.Bjelakovic G, et al. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev. 2014;(6):Cd007469.Google Scholar
- 50.Ferraro PM, et al. Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am J Kidney Dis. 2016;67(3):400–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 51.Schwaderer AL, Wolfe AJ. The association between bacteria and urinary stones. Ann Transl Med. 2017;5(2):32.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Kok DJ, et al. Timelines of the “free-particle” and “fixed-particle” models of stone-formation: theoretical and experimental investigations. Urolithiasis. 2017;45(1):33–41.PubMedCrossRefGoogle Scholar
- 53.Khan SR, Canales BK. A unified theory on the pathogenesis of Randall’s plaques and plugs. Urolithiasis. 2015;43 Suppl 1:109–23.PubMedCrossRefGoogle Scholar
- 54.Letavernier E, Bazin D, Daudon M. Randall’s plaque and kidney stones: recent advances and future challenges. C R Chim. 2016;19(11–12):1456–60.CrossRefGoogle Scholar
- 55.Wesson JA, Ward MD. Pathological biomineralization of kidney stones. Elements. 2007;3(6):415–21.CrossRefGoogle Scholar
- 56.Rodgers AL, et al. Crystalluria in marathon runners. II Ultra-marathon--males and females. Urol Res. 1988;16(2):89–93.PubMedCrossRefGoogle Scholar
- 57.Rodgers AL, Greyling KG, Noakes TD. Crystalluria in marathon runners. III Stone-forming subjects. Urol Res. 1991;19(3):189–92.PubMedCrossRefGoogle Scholar
- 58.Rodgers AL, et al. Crystalluria in marathon runners. IV Black subjects. Urol Res. 1992;20(1):27–33.PubMedCrossRefGoogle Scholar
- 59.Rez P. What does the crystallography of stones tell us about their formation? Urolithiasis. 2017;45(1):11–8.PubMedCrossRefGoogle Scholar
- 60.Evan AP, et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat Rec (Hoboken). 2014;297(4):731–48.CrossRefGoogle Scholar
- 61.Khan SR, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Siener R, Netzer L, Hesse A. Determinants of brushite stone formation: a case-control study. PLoS One. 2013;8(11):e78996.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Strohmaier WL. Course of calcium stone disease without treatment. What can we expect? Eur Urol. 2000;37(3):339–44.PubMedCrossRefGoogle Scholar
- 64.Tiselius HG, et al. Metabolic work-up of patients with urolithiasis: indications and diagnostic algorithm. Eur Urol Focus. 2017;3(1):62–71.PubMedCrossRefGoogle Scholar
- 65.Cheungpasitporn W, et al. Treatment effect, adherence, and safety of high fluid intake for the prevention of incident and recurrent kidney stones: a systematic review and meta-analysis. J Nephrol. 2016;29(2):211–9.PubMedCrossRefGoogle Scholar
- 66.Borghi L, et al. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155(3):839–43.PubMedPubMedCentralCrossRefGoogle Scholar
- 67.Sarica K, et al. The effect of calcium channel blockers on stone regrowth and recurrence after shock wave lithotripsy. Urol Res. 2006;34(3):184–9.PubMedCrossRefGoogle Scholar
- 68.Pearle MS, et al. Medical management of kidney stones: AUA guideline. J Urol. 2014;192(2):316–24.PubMedPubMedCentralCrossRefGoogle Scholar
- 69.Phillips R, et al. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev. 2015;(10):CD010057.Google Scholar
- 70.Pinheiro VB, et al. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology. 2013;82(1):33–7.PubMedCrossRefGoogle Scholar
- 71.Bergsland KJ, Worcester EM, Coe FL. Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria. Am J Physiol Renal Physiol. 2013;305(4):F592–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Escribano J, et al. Pharmacological interventions for preventing complications in idiopathic hypercalciuria. Cochrane Database Syst Rev. 2009(1):CD004754.Google Scholar
- 73.Barrett HL, et al. Probiotics for preventing gestational diabetes. Cochrane Database Syst Rev. 2014;(2):CD004754.Google Scholar
- 74.Seganfredo FB, et al. Weight-loss interventions and gut microbiota changes in overweight and obese patients: a systematic review. Obes Rev. 2017;18:832.PubMedCrossRefGoogle Scholar
- 75.Rapozo DC, Bernardazzi C, de Souza HS. Diet and microbiota in inflammatory bowel disease: the gut in disharmony. World J Gastroenterol. 2017;23(12):2124–40.PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Lieske JC. Probiotics for prevention of urinary stones. Ann Transl Med. 2017;5(2):29.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Lieske JC, et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010;78(11):1178–85.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Kaufman DW, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol. 2008;19(6):1197–203.PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Hoppe B, et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006;70(7):1305–11.PubMedCrossRefGoogle Scholar
- 80.Milliner D, Hoppe B, Groothoff J. A randomised phase II/III study to evaluate the efficacy and safety of orally administered oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis. 2017;46(4):313–23.PubMedPubMedCentralCrossRefGoogle Scholar