Skip to main content

Improving Side-Channel Analysis Through Semi-supervised Learning

  • Conference paper
  • First Online:
Smart Card Research and Advanced Applications (CARDIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11389))

Abstract

The profiled side-channel analysis represents the most powerful category of side-channel attacks. In this context, the security evaluator (i.e., attacker) gains access to a profiling device to build a precise model which is used to attack another device in the attacking phase. Mostly, it is assumed that the attacker has significant capabilities in the profiling phase, whereas the attacking phase is very restricted. We step away from this assumption and consider an attacker restricted in the profiling phase, while the attacking phase is less limited. We propose the concept of semi-supervised learning for side-channel analysis, where the attacker uses a small number of labeled measurements from the profiling phase as well as the unlabeled measurements from the attacking phase to build a more reliable model. Our results show that the semi-supervised concept significantly helps the template attack (TA) and its pooled version (TA\(_p\)). More specifically, for low noise scenario, the results for machine learning techniques and TA are often improved when only a small number of measurements is available in the profiling phase, while there is no significant difference in scenarios where the supervised set is large enough for reliable classification. For high noise scenario, TA\(_p\) and multilayer perceptron results are improved for the majority of inspected dataset sizes, while for high noise scenario with added countermeasures, we show a small improvement for TA\(_p\), Naive Bayes and multilayer perceptron approaches for most inspected dataset sizes. Current results go in favor of using semi-supervised learning, especially self-training approach, in side-channel attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough — deriving optimal distinguishers from communication theory. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_4

    Chapter  MATH  Google Scholar 

  2. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  3. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic devices using support vector machines. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_18

    Chapter  Google Scholar 

  4. Picek, S., Heuser, A., Guilley, S.: Template attack versus bayes classifier. J. Cryptographic Eng. 7(4), 343–351 (2017). https://doi.org/10.1007/s13389-017-0172-7

    Article  Google Scholar 

  5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without preprocessing. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  6. Heyszl, J., Ibing, A., Mangard, S., De Santis, F., Sigl, G.: Clustering algorithms for non-profiled single-execution attacks on exponentiations. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 79–93. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_6

    Chapter  Google Scholar 

  7. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  8. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  9. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237

    Article  Google Scholar 

  10. Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch, O.: Semi-supervised template attack. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 184–199. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40026-1_12

    Chapter  Google Scholar 

  11. Schwenker, F., Trentin, E.: Pattern classification and clustering: a review of partially supervised learning approaches. Pattern Recogn. Lett. 37, 4–14 (2014). https://doi.org/10.1016/j.patrec.2013.10.017

    Article  Google Scholar 

  12. Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning, 1st edn. The MIT Press, Cambridge (2010)

    Google Scholar 

  13. Bengio, Y., Delalleau, O., Le Roux, N.: Efficient non-parametric function induction in semi-supervised learning. Technical report 1247, Département d’informatique et recherche opérationnelle, Université de Montréal (2004)

    Google Scholar 

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  16. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17

    Chapter  Google Scholar 

  17. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977). https://doi.org/10.1145/355744.355745

    Article  MATH  Google Scholar 

  18. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River (1998)

    MATH  Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  20. TELECOM ParisTech SEN research group: DPA Contest, 4th edn. (2013–2014). http://www.DPAcontest.org/v4/

  21. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_12

    Chapter  MATH  Google Scholar 

  22. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of power variability issues and side-channel attacks for nanoscale devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_8

    Chapter  Google Scholar 

  23. Choudary, O., Kuhn, M.G.: Template attacks on different devices. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 179–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Jovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Picek, S., Heuser, A., Jovic, A., Knezevic, K., Richmond, T. (2019). Improving Side-Channel Analysis Through Semi-supervised Learning. In: Bilgin, B., Fischer, JB. (eds) Smart Card Research and Advanced Applications. CARDIS 2018. Lecture Notes in Computer Science(), vol 11389. Springer, Cham. https://doi.org/10.1007/978-3-030-15462-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15462-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15461-5

  • Online ISBN: 978-3-030-15462-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics