Skip to main content

Stem Cell Research in Aesthetic Medicine

  • Chapter
  • First Online:
Book cover Regenerative Medicine Procedures for Aesthetic Physicians
  • 825 Accesses

Abstract

Stem cells comprise the central core of every tissue within our organism. They are unspecialized cells, able to divide for long periods, and give rise to all differentiated cells in the body.

Current therapies of advance tissue failure require ultimately their replacement by organ transplantation, which involves complex procedures and chronic severe adverse effects. Regenerative medicine arose from the demand to provide alternative effective treatment for this population, replacing human cells through tissue regeneration.

This novel field displays several therapeutic strategies, from directed cell therapy to tissue bioengineering, demonstrating in numerous research trials neoangiogenic and immunomodulatory properties. Distinctive types of stem cell have been recognized. Embryonic stem cells have been proven to differentiate into cells from all three embryonic germ layers, while tissue-specific stem cells maintain organ homeostasis and differentiate into the specialized cells types from where they reside. Induced pluripotent stem cells are adult somatic cells genetically reprogrammed to an embryonic stem cell-like state, resulting in pluripotency capability. Meanwhile, in the blood from the placenta and umbilical cord, umbilical stem cells can be isolated.

Stem cell-based therapies have been proven to have adequate safety profiles and therapeutic effects in a number of pathological conditions in aesthetic medicine, from unsuccessful wound healing to adipose graft in soft tissue filling, employing biomaterials in cartilage defects and bone reconstruction, and promoting antiaging mechanisms in damaged skin. However, several issues need to be properly addressed before their full potential can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bongso A, Richards M. History and perspective of stem cell research. Best Pract Res Clin Obstet Gynaecol. 2004;18:827–42.

    Article  PubMed  Google Scholar 

  2. Rosenthal N. Prometheus’s vulture and the stem-cell promise. N Engl J Med. 2003;349:267–74.

    Article  PubMed  Google Scholar 

  3. Polykandriotis E, Popescu LM, Horch RE. Regenerative medicine: then and now—an update of recent history into future possibilities. J Cell Mol Med. 2010;14(10):2350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. European Molecular Biology Organization (EMBO). Stem Cell Research. 2006: 1–77.

    Google Scholar 

  5. Orlando G, Wood KJ, Stratta RJ, et al. Regenerative medicine and organ transplantation: past, present, and future. Transplantation. 2011;91:1310–7.

    Article  PubMed  Google Scholar 

  6. Thompson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  Google Scholar 

  7. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008:1–5.

    Article  PubMed  Google Scholar 

  8. Mao AS, Mooney DJ. Regenerative medicine: current therapies and future directions. PNAS. 2015;112:14452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alison MR, Poulsom R, Forbes S, et al. An introduction to stem cells. J Pathol. 2002;197:419–23.

    Article  PubMed  Google Scholar 

  10. Smith AG. Embryo-derived stem cells of mice and men. Annu Rev Cell Dev Biol. 2001;17:435–62.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Himdani S, Jessop ZM, Al-Sabah A, et al. Tissue-engineered solutions in plastic and reconstructive surgery: principles and practice. Front Surg. 2017;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bjornson CR, Rietze RL, Reynolds BA, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999;283:534–7.

    Article  CAS  PubMed  Google Scholar 

  13. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci. 1981;78:7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bajada S., Mazakova I., Ashton B.A., et al. Stem cells in regenerative medicine. Topics in Tissue Engineering. 2008, Vol. 4. Eds. N Ashammakhi, R Reis, & F Chiellini.

    Google Scholar 

  15. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs eggs. Proc Natl Acad Sci. 1952;38:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morrison S, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997:287–98.

    Article  CAS  PubMed  Google Scholar 

  17. Abdelkrim H, Domínguez-Bendala J. The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med. 2009;13:1464–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287:1427–30.

    Article  CAS  PubMed  Google Scholar 

  19. Stem cell facts. International Society for Stem Cell Research. 2011.

    Google Scholar 

  20. Priest RE, Marimuthu KM, Priest JH. Origin of cells in human amniotic fluid cultures: ultrastructural features. Lab Investig. 1978;39:106–9.

    CAS  PubMed  Google Scholar 

  21. De Coppi P, Bartsch G, Sidddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Natl Biotechnol. 2007;25:100–6.

    Article  CAS  Google Scholar 

  22. Houlihan JM, Biro PA, Harper HM, et al. The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol. 1995;154:5665–74.

    CAS  PubMed  Google Scholar 

  23. Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor beta: the role of T regulatory cells. Immunology. 2006;117:433–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sassi OK, Marinowic D, Brum DE, et al. Stem cells in dermatology. An Bras Dermatol. 2014;89:286–91.

    Article  Google Scholar 

  26. Kim YJ, Jeong JH. Clinical application of adipose stem cells in plastic surgery. J Korean Med Sci. 2014;29:462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ojeh N, Pastar I, Tomic-Canic M, et al. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci. 2015;16:25476–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Menocal L, Shareef S, Salgado M. Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Stem Cell Res Ther. 2015;6:1–11.

    Article  CAS  Google Scholar 

  29. Sorrell JM, Caplan AI. Topical delivery of mesenchymal stem cells and their function in wounds. Stem Cell Res Ther. 2010;1:30.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Toyserkani NM, Christensen ML, Sheikh SP, Sørensen JA. Adipose-derived stem cells new treatment for wound healing? Ann Plast Surg. 2015;75:117–23.

    Article  CAS  PubMed  Google Scholar 

  31. Kim JH, Jung M, Kim HS, et al. Adipose-derived stem cells as a new therapeutic modality for ageing skin. Exp Dermatol. 2011;20:383–7.

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Ezzelarab MB, Cooper DK. Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation. 2012;19:273–85.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yun IS, Jeon YR, Lee WJ, et al. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatol Surg. 2012;38:1678–88.

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira SM, Reis RL, Mano JF. Towards the design of 3D multiscale instructive tissue engineering constructs: current approaches and trends. Biotechnol Adv. 2015;33:842–55.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu X, Cui W, Li X, et al. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules. 2008;9:1795–801.

    Article  CAS  PubMed  Google Scholar 

  36. Rustad KC, Wong VW, Sorkin M, et al. Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials. 2012;33:80–90.

    Article  CAS  PubMed  Google Scholar 

  37. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng. 2014;20:473–84.

    Article  CAS  Google Scholar 

  38. Liu S, Zhang H, Zhang X, et al. Tissue Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair. Tissue Eng Part A. 2011;17:725–39.

    Article  CAS  PubMed  Google Scholar 

  39. Lin YC, Grahovac T, Oh SJ, et al. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater. 2013;9:5243–50.

    Article  CAS  PubMed  Google Scholar 

  40. Compton CC, Nadire KB, Regauer S, et al. Cultured human sole-derived keratinocyte grafts re-express site-specific differentiation after transplantation. Differentiation. 1998;64:45–53.

    Article  CAS  PubMed  Google Scholar 

  41. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11:441–50.

    Article  CAS  PubMed  Google Scholar 

  42. Shabbir A, Cox A, Rodriguez-Menocal L, et al. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev. 2015;24:1635–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baglio SR, Rooijers K, Koppers-Lalic D, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive mirna and tRNA species. Stem Cell Res Ther. 2015;6:1–20.

    Article  CAS  Google Scholar 

  44. Witkowska-Zimny M, Walenko K. Stem cells from adipose tissue. Cell Mol Biol Lett. 2011;16:236–57.

    PubMed  PubMed Central  Google Scholar 

  45. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    Article  CAS  PubMed  Google Scholar 

  46. Gaur M, Dobke M, Lunyak VV. Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci. 2017;18:1–29.

    Article  CAS  Google Scholar 

  47. Fraser JK, Hicok KC, Shanahan R, et al. The celution system: automated processing of adipose-derived regenerative cells in a functionally closed system. Adv Wound Care. 2014;3:38–45.

    Article  Google Scholar 

  48. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deslex S, Negrel R, Vannier C, et al. Differentiation of human adipocyte precursors in a chemically defined serum-free medium. Int J Obes. 1987;11:19–27.

    CAS  PubMed  Google Scholar 

  50. Toyserkani NM, Christensen ML, Sheikh SP, et al. Adipose-derived stem cells. New treatment for wound healing? Ann Plast Surg. 2015;75:117–23.

    Article  CAS  PubMed  Google Scholar 

  51. Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109:1292–8.

    Article  PubMed  Google Scholar 

  52. Lee EY, Xia Y, Kim WS, et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair Regen. 2009;17:540–7.

    Article  PubMed  Google Scholar 

  53. Gir P, Brown SA, Oni G, et al. Fat grafting: evidence-based review on autologous fat harvesting, processing, reinjection, and storage. Plast Reconstr Surg. 2012;130:249–58.

    Article  CAS  PubMed  Google Scholar 

  54. Jeong JH. Adipose stem cells and skin repair. Curr Stem Cell Res Ther. 2010;5:137–40.

    Article  CAS  PubMed  Google Scholar 

  55. Matsumoto D, Sato K, Gonda K, et al. Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006;12:3375–82.

    Article  CAS  PubMed  Google Scholar 

  56. Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adiposederived stem cells. Dermatol Surg. 2008;34:1178–85.

    CAS  PubMed  Google Scholar 

  57. Lee SK, Kim DW, Dhong ES, et al. Facial soft tissue augmentation using autologous fat mixed with stromal vascular fraction. Arch Plast Surg. 2012;39:534–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim M, Kim I, Lee SK, et al. Clinical trial of autologous differentiated adipocytes from stem cells derived from human adipose tissue. Dermatol Surg. 2011;37:750–9.

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Olmo D, Garcia-Arranz M, Herreros D, et al. A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2005;48:1416–23.

    Article  PubMed  Google Scholar 

  60. Rodriguez AM, Pisani D, Dechesne CA, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med. 2005;201:1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cousin B, Andre M, Arnaud E, et al. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun. 2003;301:1016–22.

    Article  CAS  PubMed  Google Scholar 

  62. Salibian AA, Widgerow AD, Abrouk M, et al. Stem cells in plastic surgery: a review of current clinical and translational applications. Arch Plast Surg. 2013;40:666–75.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee EH, Hui JH. The potential of stem cells in orthopaedic surgery. J Bone Jt Surg. 2006;88:841–53.

    Article  CAS  Google Scholar 

  64. Dhinsa BS, Adesida AB. Current clinical therapies for cartilage repair, their limitation and the role of stem cells. Curr Stem Cell Res Ther. 2012;7:143–8.

    Article  CAS  PubMed  Google Scholar 

  65. Vidal MA, Robinson SO, Lopez MJ, et al. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg. 2008;37:713–24.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Koga H, Shimaya M, Muneta T, et al. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis ResTher. 2008;10:R84.

    Article  CAS  Google Scholar 

  67. Centeno CJ, Schultz JR, Cheever M, et al. Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 2011;6:368–78.

    Article  CAS  PubMed  Google Scholar 

  68. Wakitani S, Nawata M, Tensho K, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1:74–9.

    Article  PubMed  Google Scholar 

  69. Haleem AM, Singergy A, Sabry D, et al. The clinical use of human cultureexpanded autologous bone marrowmesenchymal stemcells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Peeters CM, Leijs MJ, Reijman M, et al. Safety of intraarticular cell-therapy with culture-expanded stem cells in humans: a systematic literature review. Osteoarthr Cartil. 2013;21:1465–73.

    Article  CAS  Google Scholar 

  71. Shafiee A, Soleimani M, Chamheidari GA, et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res. 2011;99:467–78.

    Article  CAS  Google Scholar 

  72. Ramakrishna V, Janardhan PB, Sudarsanareddy L. Stem cells and regenerative medicine—a review. Ann Rev Res Biol. 2011;1:79–110.

    CAS  Google Scholar 

  73. Deschaseaux F, Pontikoglou C, Luc S. Bone regeneration: the stem/progenitor cells point of view. J Cell Mol Med. 2010;14:103–15.

    Article  CAS  PubMed  Google Scholar 

  74. Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg. 2004;32:370–3.

    Article  PubMed  Google Scholar 

  75. Mesimaki K, Lindroos B, Tornwall J, et al. Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg. 2009;38:201–9.

    Article  CAS  PubMed  Google Scholar 

  76. Warnke PH, Springer IN, Wiltfang J, et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.

    Article  CAS  PubMed  Google Scholar 

  77. Sandor GK, Tuovinen VJ, Wolff J, et al. Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: a case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 2013;71:938–50.

    Article  PubMed  Google Scholar 

  78. Fisher GJ, Datta SC, Talwar HS, et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379:335–9.

    Article  CAS  PubMed  Google Scholar 

  79. Stevenson S, Sharpe DT, Thornton MJ. Effects of oestrogen agonists on human dermal fibroblasts in an in vitro wounding assay. Exp Dermatol. 2009;18:988–90.

    Article  CAS  PubMed  Google Scholar 

  80. Saintigny G, Bernard FX, Juchaux F, et al. Reduced expression of the adhesion protein tensin1 in cultured human dermal fibroblasts affects collagen gel contraction. Exp Dermatol. 2008;17:788–9.

    Article  PubMed  Google Scholar 

  81. Bednarska K, Kieszek R, Domagała P, et al. The use of platelet-rich-plasma in aesthetic and regenerative medicine. MEDtube Sci. 2015;3:8–15.

    Google Scholar 

  82. Godic A, Poljšak B, Adamic M, et al. The role of antioxidants in skin cancer prevention and treatment oxidative medicine and cellular longevity. Oxidative Med Cell Longev. 2014;860479:1–6.

    Article  CAS  Google Scholar 

  83. Banihashemi M, Nakhaeizadeh S. An introduction to application of platelet rich plasma (PRP) in skin rejuvenation. Rev Clin Med. 2014;1:38–43.

    Google Scholar 

  84. Marx RE. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–96.

    Article  PubMed  Google Scholar 

  85. Amable PR, Carias RB, Teixeira MV, et al. Plateletrich plasma preparation for regenerative medicine: optimization and quantification of cytokines andgrowth factors. Stem Cell Res Ther. 2013;4:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Graziani F, Ivanovski S, Cei S, et al. The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res. 2006;17:212–9.

    Article  PubMed  Google Scholar 

  87. Kakudo N, Minakata T, Mitsui T, et al. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg. 2008;122:1352–60.

    Article  CAS  PubMed  Google Scholar 

  88. Kim DH. Can platelet-rich plasma be used for skin rejuvenation? Evaluation of effects of platelet-rich plasma on human dermal fibroblast. Ann Dermatol. 2011;23:424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67:1187–94.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371:1579–86.

    Article  PubMed  CAS  Google Scholar 

  91. Shin TH, Kim HS, Choi SW, et al. Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. Int J Mol Sci. 2017;18:1–25.

    Google Scholar 

  92. Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood. 2005;105:2821–7.

    Article  CAS  PubMed  Google Scholar 

  93. Zhou H, Guo M, Bian C, et al. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant. 2010;16:403–12.

    Article  CAS  PubMed  Google Scholar 

  94. Liang J, Zhang H, Hua B, et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann Rheum Dis. 2010;69:1423–9.

    Article  PubMed  Google Scholar 

  95. Campanati A, Orciani M, Consales V, et al. Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Arch Dermatol Res. 2014;306:915–20.

    Article  CAS  PubMed  Google Scholar 

  96. Kim HS, Lee JH, Roh KH, et al. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells. 2017;35:248–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Sutelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sutelman, P. (2019). Stem Cell Research in Aesthetic Medicine. In: Pinto, H., Fontdevila, J. (eds) Regenerative Medicine Procedures for Aesthetic Physicians. Springer, Cham. https://doi.org/10.1007/978-3-030-15458-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15458-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15457-8

  • Online ISBN: 978-3-030-15458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics