Skip to main content

Appropriate Renewable Energy Sources for Electricity Generation: A Multi-Attribute Decision-Making Approach

  • Chapter
  • First Online:
R&D Management in the Knowledge Era

Abstract

The use of different types of renewable energy and replacing the polluting non-renewable and perishable sources show the increasing importance of decision making. In this line, the current study proposes a selection method for the best-established means of electricity generation from renewable energies. A multi-attribute decision making (MADM) model, by applying the methods of CCSD and COPRAS is used. As an applied quantitative research, the significance of this paper is the application of a new hybrid method based on MADM techniques. A number of twenty attributes, being divided into four categories of technological, economic, environmental and social aspects, as well as four sources of renewable energy are analyzed. The alternatives used here include wind power, solar power, biomass, and hydroelectricity. The results reveal that solar power and wind energy are the most appropriate alternatives for electricity generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CCSD.

References

  1. Tsai, W.-T. (2005). Current status and development policies on renewable energy technology research in Taiwan. Renewable and Sustainable Energy Reviews, 9(3), 237–253.

    Article  Google Scholar 

  2. Dat, L. Q., & Chou, S.-Y. (2014). Selecting renewable energy technology via a fuzzy MCDM approach. Amsterdam: IOS Press.

    Google Scholar 

  3. Cormio, C., Dicorato, M., Minoia, A., & Trovato, M. (2003). A regional energy planning methodology including renewable energy sources and environmental constraints. Renewable and Sustainable Energy Reviews, 7(2), 99–130.

    Article  Google Scholar 

  4. Beccali, M., Cellura, M., & Mistretta, M. (2003). Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology. Renewable Energy, 28(13), 2063–2087.

    Article  Google Scholar 

  5. Beccali, M., Cellura, M., & Ardente, D. (1998). Decision making in energy planning: The ELECTRE multicriteria analysis approach compared to a fuzzy-sets methodology. Energy Conversion and Management, 39(16), 1869–1881.

    Article  Google Scholar 

  6. Dicorato, M., Forte, G., & Trovato, M. (2008). Environmental-constrained energy planning using energy-efficiency and distributed-generation facilities. Renewable Energy, 33(6), 1297–1313.

    Article  Google Scholar 

  7. Krukanont, P., & Tezuka, T. (2007). Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan. Energy, 32(10), 1809–1824.

    Article  Google Scholar 

  8. Tsoutsos, T., Drandaki, M., Frantzeskaki, N., Iosifidis, E., & Kiosses, I. (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy, 37(5), 1587–1600.

    Article  Google Scholar 

  9. Tan, R. R., & Foo, D. C. (2007). Pinch analysis approach to carbon-constrained energy sector planning. Energy, 32(8), 1422–1429.

    Article  Google Scholar 

  10. Zhou, P., Ang, B. W., & Poh, K. L. (2006). Decision analysis in energy and environmental modeling: An update. Energy, 31(14), 2604–2622.

    Article  Google Scholar 

  11. Keeney, R. L., Renn, O., & von Winterfeldt, D. (1987). Structuring West Germany’s energy objectives. Energy Policy, 15(4), 352–362.

    Article  Google Scholar 

  12. Hämäläinen, R. P., & Karjalainen, R. (1992). Decision support for risk analysis in energy policy. European Journal of Operational Research, 56(2), 172–183.

    Article  Google Scholar 

  13. Mirasgedis, S., & Diakoulaki, D. (1997). Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems. European Journal of Operational Research, 102(2), 364–379.

    Article  Google Scholar 

  14. Mavrotas, G., Diakoulaki, D., & Papayannakis, L. (1999). An energy planning approach based on mixed 0–1 multiple objective linear programming. International Transactions in Operational Research, 6(2), 231–244.

    Article  Google Scholar 

  15. Afgan, N. H., & Carvalho, M. G. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739–755.

    Article  Google Scholar 

  16. Haralambopoulos, D. A., & Polatidis, H. (2003). Renewable energy projects: Structuring a multi-criteria group decision-making framework. Renewable Energy, 28(6), 961–973.

    Article  Google Scholar 

  17. Polatidis, H., & Haralambopoulos, D. (2004). Local renewable energy planning: A participatory multi-criteria approach. Energy Sources, 26(13), 1253–1264.

    Article  Google Scholar 

  18. Topcu, Y. I., & Ulengin, F. (2004). Energy for the future: An integrated decision aid for the case of Turkey. Energy, 29(1), 137–154.

    Article  Google Scholar 

  19. Cavallaro, F., & Ciraolo, L. (2005). A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy, 33(2), 235–244.

    Article  Google Scholar 

  20. Begić, F., & Afgan, N. H. (2007). Sustainability assessment tool for the decision making in selection of energy system—Bosnian case. Energy, 32(10), 1979–1985.

    Article  Google Scholar 

  21. Burton, J., & Hubacek, K. (2007). Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments. Energy Policy, 35(12), 6502–6412.

    Article  Google Scholar 

  22. Afgan, N. H., Pilavachi, P. A., & Carvalho, M. G. (2007). Multi-criteria evaluation of natural gas resources. Energy Policy, 35(1), 704–713.

    Article  Google Scholar 

  23. Önüt, S., Tuzkaya, U. R., & Saadet, N. (2008). Multiple criteria evaluation of current energy resources for Turkish manufacturing industry. Energy Conversion and Management, 49(6), 1480–1492.

    Article  Google Scholar 

  24. Patlitzianas, K. D. (2008). An information decision support system towards the formulation of a modern energy companies’ environment. Renewable and Sustainable Energy Reviews, 12(3), 790–806.

    Article  Google Scholar 

  25. Kahraman, C., Kaya, İ., & Cebi, S. (2009). A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34(10), 1603–1616.

    Article  Google Scholar 

  26. Wang, J.-J. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278.

    Article  Google Scholar 

  27. Kahraman, C., & Kaya, İ. (2010). A fuzzy multicriteria methodology for selection among energy alternatives. Expert Systems with Applications, 37(9), 6270–6281.

    Article  Google Scholar 

  28. Wang, B., Kocaoglu, D. F., Daim, T. U., & Yang, J. (2010). A decision model for energy resource selection in China. Energy Policy, 38(11), 7130–7141.

    Article  Google Scholar 

  29. Barry, M.-L., Steyn, H., & Brent, A. (2011). Selection of renewable energy technologies for Africa: Eight case studies in Rwanda, Tanzania and Malawi. Renewable Energy, 36(11), 2485–2852.

    Article  Google Scholar 

  30. Kaya, T., & Kahraman, C. (2011). Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems with Applications, 38(6), 6577–6585.

    Article  Google Scholar 

  31. Doukas, H. (2013). Linguistic multicriteria decision making for energy systems: Building the ‘RE2S’framework. Wiley Interdisciplinary Reviews: Energy and Environment, 2(5), 571–585.

    Article  Google Scholar 

  32. Sadeghi, A., Larimian, T., & Molabashi, A. (2012). Evaluation of renewable energy sources for generating electricity in province of Yazd: A fuzzy MCDM approach. Procedia-Social and Behavioral Sciences, 62, 1095–1099.

    Article  Google Scholar 

  33. Ahmad, S., & Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy, 63, 458–466.

    Article  Google Scholar 

  34. Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25–33.

    Article  Google Scholar 

  35. Özkan, B., Kaya, İ., Cebeci, U., & Başlıgil, H. (2015). A hybrid multicriteria decision making methodology based on Type-2 fuzzy sets for selection among energy storage alternatives. International Journal of Computational Intelligence Systems, 8(5), 914–927.

    Article  Google Scholar 

  36. Tan, B., Yavuz, Y., Otay, E. N., & Çamlıbel, E. (2016). Optimal selection of energy efficiency measures for energy sustainability of existing buildings. Computers & Operations Research, 66, 258–271.

    Article  Google Scholar 

  37. Ying-Ming, W., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51, 1–2.

    Article  Google Scholar 

  38. Hwang, C., & Yoon, K. (1981). Multiple attribute decision-making: Methods and applications. New York: Springer.

    Book  Google Scholar 

  39. Bitarafan, M., Zolfani, S. H., Arefi, S. L., & Zavadskas, E. K. (2012). Evaluating the construction methods of cold-formed steel structures in reconstructing the areas damaged in natural crises, using the methods AHP and COPRAS-G. Archives of Civil and Mechanical Engineering, 12(3), 360–367.

    Article  Google Scholar 

  40. Zavadskas, E. K., & Kaklauskas, A. (1996). Determination of an efficient contractor by using the new method of multicriteria assessment.In International Symposium for “The Organization and Management of Construction,” Shaping Theory and Practice (Vol. 2).

    Google Scholar 

  41. Tupenaite, L., Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Seniut, M. (2010). Multiple criteria assessment of alternatives for built and human environment renovation. Journal of Civil Engineering and Management, 16(2), 257–266.

    Article  Google Scholar 

  42. Chatterjee, P., Athawale, V. M., & Chakraborty, S. (2011). Materials selection using complex proportional assessment and evaluation of mixed data methods. Materials & Design, 32(2), 851–860.

    Article  Google Scholar 

  43. Kaklauskas, A., Zavadskas, E. K., Naimavicienė, J., Krutinis, M., Plakys, V., & Venskus, D. (2010). Model for a complex analysis of intelligent built environment. Automation in Construction, 19(3), 326–340.

    Article  Google Scholar 

  44. Zavadskas, E. K., Turskis, Z., & Tamošaitiene, J. (2010). Risk assessment of construction projects. Journal of Civil Engineering and Management, 16(1), 33–46.

    Article  Google Scholar 

  45. Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamošaitienė, J. (2009). Multi-attribute decision-making model by applying grey numbers. Informatica, 20(2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalil Heidary Dahooie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahooie, J.H., Vanaki, A.S., Mohammadi, N., Ghanadian, M. (2019). Appropriate Renewable Energy Sources for Electricity Generation: A Multi-Attribute Decision-Making Approach. In: Daim, T., Dabić, M., Başoğlu, N., Lavoie, J.R., Galli, B.J. (eds) R&D Management in the Knowledge Era. Innovation, Technology, and Knowledge Management. Springer, Cham. https://doi.org/10.1007/978-3-030-15409-7_10

Download citation

Publish with us

Policies and ethics