Skip to main content

Information Science and Technology: A New Paradigm in Military Medical Research

  • Chapter
  • First Online:
  • 2418 Accesses

Part of the book series: Innovation, Technology, and Knowledge Management ((ITKM))

Abstract

The escalating pace of technologies such as computers and mobile communications systems, along with major advances in neurobiology, increases opportunities for military medical problem solving. This convergence of information technology with medicine was new as a core funded program in military medical research, but foundational research had been conducted by the Telemedicine and Advanced Technology Research Center (TATRC) through special congressional interest projects, small business innovative research programs (SBIRs), and other special funding programs in the Department of Defense (DoD) totaling $500 M/year for more than a decade before its inception. Five main thrust areas formed the new funded program supported by the Joint Program Committee 1 (JPC1) to transform military health care to a safer, will-predictive, preventative, evidence-based, and participatory system. These focus areas included medical simulation and training, mobile health (m-Health), open electronic health record and medical systems interoperability, computational biology and predictive models, and knowledge engineering. This modest investment in transformational research stands to produce huge benefits in cost savings in military medicine through improved efficiencies provided with everyday technologies.

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

T.S. Eliot, The Rock, 1934 [1]

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eliot, T. S. (1934). The rock. London: Faber and Faber.

    Google Scholar 

  2. Goeringer, F., Mun, S. K., & Kerlin, B. D. (1989). Digital medical imaging: Implementation strategy for the Defense medical establishment. Proceedings for SPIE Medical Imaging, 1093, 429.

    Article  Google Scholar 

  3. Smith, D. V., Smith, S., Bender, G. N., Carter, J. R., Kim, Y., Cawthon, M. A., et al. (1995). Evaluation of the medical diagnostic imaging support system based on 2 years of clinical experience. Journal of Digital Imaging, 8, 75–87.

    Article  Google Scholar 

  4. Bowen, H. K., & Purrington, C. (2007, November 27). Center for Integration of Medicine and Innovative Technology (CIMIT) (Harvard Business School Case Report #608036-PDF-ENG), p. 28.

    Google Scholar 

  5. Wottawa, C., Fan, R., Bisley, J. W., Dutson, E. P., Culjat, M. O., & Grundfest, W. S. (2011). Applications of tactile feedback in medicine. Studies in Health Technology and Informatics, 163, 703–709.

    Google Scholar 

  6. Taylor, Z. D., Navarro, A., Kealey, C. P., Beenhouwer, D., Haake, D. A., Grundfest, W. S., et al. (2010). Bacterial biofilm disruption using laser generated shockwaves. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 1028–1032.

    Google Scholar 

  7. Mun, S. K., Levine, B., Cleary, K., & Dai, H. (1998). Deployable teleradiology and telemedicine for the US military. Computer Methods and Programs in Biomedicine, 57, 21–27.

    Article  Google Scholar 

  8. Von Hippel, E. (1976). The dominant role of users in the scientific instrument innovation process. Research Policy, 5, 212–239.

    Article  Google Scholar 

  9. Hautamaki, A. (2010). Sustainable innovation: A new age of innovation and Finland’s innovation policy (Sitra Reports Series) (Vol. 87, p. 144). Helsinki: Edita Prima.

    Google Scholar 

  10. Glaser, V. (2008). Pioneers in telemedicine – Interview with COL Ron K. Poropatich, M.D. Telemedicine Journal and E-Health, 14, 413–417. https://doi.org/10.1089/tmj.2008.9968.

    Article  Google Scholar 

  11. Pak, H., Triplett, C. A., Lindquist, J. H., Grambow, S. C., & Whited, J. D. (2007). Store-and-forward teledermatology results in similar clinical outcomes to conventional clinic-based care. Journal of Telemedicine and Telecare, 13, 26–30.

    Article  Google Scholar 

  12. Pak, H. S., Datta, S. K., Triplett, C. A., Lindquist, J. H., Grambow, S. C., & Whited, J. D. (2009). Cost minimization analysis of a store-and-forward teledermatology consult system. Telemedicine Journal and E-Health, 15, 160–165.

    Article  Google Scholar 

  13. Telemedicine and Advanced Technology Research Center. U.S. Army Medical Research and Materiel Command. 2009 TATRC Annual Report. Fort Detrick, Maryland. pp. 36–37.

    Google Scholar 

  14. Greenes, R., Bloomrosen, M., Brown-Connolly, N. E., Curtis, C., Detmer, D. E., Enberg, R., et al. (2010). The morningside initiative: Collaborative development of a knowledge repository to accelerate adoption of clinical decision support. The Open Medical Informatics Journal, 4, 278–290.

    Article  Google Scholar 

  15. Reifman, J., Gilbert, G. R., Fagan, L., & Satava, R. (2002). Military research needs in biomedical informatics. Journal of the American Medical Informatics Association, 9, 509–519.

    Article  Google Scholar 

  16. Hoyt, R. W., Reifman, J., Coster, T. S., & Buller, M. J. (2002, November 9–13). Combat medical informatics: Present and future. In Proceedings of the AMIA 2002 Annual Symposium 2002 (pp. 335–339).

    Google Scholar 

  17. Reifman, J., Gilbert, G., Parker, M., & Lam, D. (2004, April 19–21). Challenges of electronic surveillance systems. In: NATO RTO-MP-HFM-108, Symposium on NATO Medical Surveillance and Response: Research and Technology Opportunity and Options, Budapest, Hungary (pp. 12.1–12.17).

    Google Scholar 

  18. Christianson, C. M., Grossman, J. H., & Hwang, J. (2009). The innovator’s prescription: A disruptive solution for health care (p. 441). New York: McGraw-Hill.

    Google Scholar 

  19. Cook G. (2011, April 30). Joint Medical Distance Support and Evacuation, Joint Capability Technology Demonstration, FY09-FY12. Presentation at US Army telemedicine partnership series 2011: Tip of the spear medicine – emerging technologies for special forces, Tampa, Florida.

    Google Scholar 

  20. Stark, A. (2010). A closer look at the DoD blast injury research program coordinating office. Military Medical/NBC Technology, 14, 40–41.

    Google Scholar 

  21. Moses, G., Magee, J. H., Bauer, J. J., & Leitch, R. (2001). Military medical modeling and simulation in the 21st century. Studies in Health Technology and Informatics, 81, 322–328.

    Google Scholar 

  22. Schimpff, S. C. (2008, October). Megatrends, driving forces, barriers to implementation, overarching perspectives, major trends into the future, implications for TATRC and specific recommendations for action. Final Report. Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, Maryland (p. 93). NTIS accession number ADA514473.

    Google Scholar 

  23. Mun, S. K., Pak, H., Clyburn, C., Collmann, J., Tohme, W., & Levine, B. (2009). The executive summary of the national forum on the future of defense health information systems. Military Medicine, 174(Suppl 1), 1–3.

    Article  Google Scholar 

  24. Gallagher, A. G., Ritter, E. M., Champion, H., Higgins, G., Fried, M. P., Moses, G., et al. (2005). Virtual reality simulation for the operating room – Proficiency-based training as a paradigm shift in surgical skills training. Annals of Surgery, 241, 364–372.

    Article  Google Scholar 

  25. Pugh, C. M., Bevan, M. G., Duve, R. J., White, H. L., Magee, J. H., & Wiehagen, G. B. (2011). A retrospective review of TATRC funding for medical modeling and simulation technologies. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, 6, 218–225.

    Article  Google Scholar 

  26. Dawson, S. (2011). Perspectives on performance assessment in medical simulation. The Surgeon, 9, S21–S22.

    Article  Google Scholar 

  27. Dawson, S. (2006). Procedural simulation: A primer. Journal of Vascular and Interventional Radiology, 17, 205–213.

    Article  Google Scholar 

  28. Stewart, T., May, S., Allen, H. R., Bathalon, G. P., Lavergne, G., Sigrist, L., Ryan, D., & Williamson, D. A. (2008). Development of an internet/population-based weight management program for the US Army. Journal of Diabetes Science and Technology, 2, 116–126.

    Article  Google Scholar 

  29. Vigersky, R. A., Hanson, E., McDonough, E., Rapp, T., Pajak, J., & Galen, R. S. (2003). A wireless diabetes management and communication system. Diabetes Technology and Therapeutics, 5, 695–702.

    Article  Google Scholar 

  30. Fonda, S. J., Kedziora, R. J., Vigersky, R. A., & Bursell, S. E. (2010). Combining iGoogle and personal health records to create a prototype personal health application for diabetes self-management. Telemedicine Journal and E-Health, 16, 480–489.

    Article  Google Scholar 

  31. Ershow, A. G., Friedl, K. E., Peterson, C. M., Riley, W. T., Rizzo, A., & Wansink, B. (2011). Virtual reality technologies for research and education in obesity and diabetes. A National Institutes of Health – Department of Defense Symposium. Journal of Diabetes Science and Technology, 5, 212–344. Retrieved January 9, 2011, from http://www.journalofdst.org/March2011/.

    Article  Google Scholar 

  32. Iyengar, M. S., Carruth, T., Flores-Arango, J. F., & Dunn, K. (2008). Informatics-based medical procedure assistance during space missions. Hippokratia, 12, 23–27.

    Google Scholar 

  33. Calcagni, D. E., Clyburn, C. A., Tomkins, G., Gilbert, G. R., Cramer, T. J., Lea, R. K., et al. (1996). Operation joint endeavor in Bosnia: Telemedicine systems and case reports. Telemedicine Journal, 2, 211–224.

    Article  Google Scholar 

  34. Levine, B. A., Cleary, K., & Mun, S. K. (1998). Deployable teleradiology: Bosnia and beyond. IEEE Transactions on Information Technology in Biomedicine, 2, 30–34.

    Article  Google Scholar 

  35. Poropatich, R. K., DeTreville, R., Lappan, C., & Barrigan, C. R. (2006). The US Army telemedicine program: General overview and current status in Southwest Asia. Telemedicine Journal and E-Health, 12, 396–408.

    Article  Google Scholar 

  36. Blank, E., Lappan, C., Belmont, P. J., Jr., Machen, M. S., Ficke, J., Pope, R., et al. (2011). Early analysis of the United States Army’s telemedicine orthopaedic consultation program. Journal of Surgical Orthopaedic Advances, 20, 50–55.

    Google Scholar 

  37. Mines, M. J., Boser, K. S., Lappan, C. M., Mazzoli, R. A., & Poropatich, R. K. (2011). The United States Army ocular teleconsultation program 2004 through 2009. American Journal of Ophthalmology, 152, 126–132.

    Article  Google Scholar 

  38. Poropatich, R., Lappan, C., & Lam, D. (2010, April 19–21). Operational use of US Army telemedicine information systems in Iraq and Afghanistan – considerations for NATO operations. RTO-MP-HFM-182, Use of advanced technologies and new procedures in medical field operations, Essen, Germany (pp. 36.1–36.10).

    Google Scholar 

  39. Ereso, A. Q., Garcia, P., Tseng, E., Gauger, G., Kim, H., Dua, M. M., et al. (2010). Live transference of surgical subspecialty skills using telerobotic proctoring to remote general surgeons. Journal of the American College of Surgeons, 211, 400–411.

    Article  Google Scholar 

  40. McVeigh, F. (2011, May 2). Outcome metrics and effectiveness of the Army-wide tele-health network across 19 timezones. In American Telemedicine Association Annual Meeting, San Antonio, Texas.

    Google Scholar 

  41. Mahnke, C. B., Mulreany, M. P., Inafuku, J., Abbas, M., Feingold, B., & Paolillo, J. A. (2008). Utility of store-and-forward pediatric telecardiology evaluation in distinguishing normal from pathologic pediatric heart sounds. La Clinica Pediatrica, 47, 919–925.

    Article  Google Scholar 

  42. Mahnke, C. B., Jordan, C. P., Bergvall, E., Person, D. A., & Pinsker, J. E. (2011). The Pacific Asynchronous TeleHealth (PATH) system: Review of 1,000 pediatric teleconsultations. Telemedicine Journal and E-Health, 17, 35–39.

    Article  Google Scholar 

  43. Shore, J., Lynch, M., & Yellowless, P. (2011, April 30). Store and forward telepsychiatry: Consultations for remote and forward deployments. Presentation at US Army telemedicine partnership series 2011: Tip of the spear medicine – emerging technologies for special forces, Tampa, Florida.

    Google Scholar 

  44. Kaplan, K. J., Burgess, J. R., Sandberg, G. D., Myers, C. P., Bigott, T. R., & Greenspan, R. B. (2002). Use of robotic telepathology for frozen-section diagnosis: A retrospective trial of a telepathology system for intraoperative consultation. Modern Pathology, 15, 1197–1204.

    Article  Google Scholar 

  45. McMahon, G. T., Gomes, H. E., Hohne, S. H., Hu, T. M. J., Levine, B. A., & Conlin, P. R. (2005). Web-based care management in patients with poorly controlled diabetes mellitus. Diabetes Care, 28, 1624–1629.

    Article  Google Scholar 

  46. Smith, K. E., Levine, B., Clement, S. C., Hu, M. J., Alaoui, A., & Mun, S. K. (2004). Impact of MyCareTeam for poorly controlled DM. Diabetes Technology and Therapeutics, 6, 828–835.

    Article  Google Scholar 

  47. Robinson, J. D., Turner, J. W., Levine, B. A., & Tian, Y. (2011). Expanding the walls of the healthcare encounter: Support and outcomes of patients online. Health Communication, 26, 125–134.

    Article  Google Scholar 

  48. Robinson, J. D., Turner, J. W., Levine, B., & Tian, Y. (2010). Patient-provider interaction and the regulation of diabetes mellitus. Health Communication, 25, 597–598.

    Article  Google Scholar 

  49. Levine, B. A., Turner, J. W., Robinson, J. D., Angelus, P., & Hu, T. M. J. (2009). Communication plays a critical role in web-based monitoring. Journal of Diabetes Science and Technology, 3, 461–467.

    Article  Google Scholar 

  50. Rodbard, D., & Vigersky, R. A. (2011). Design of a decision support system to help clinicians manage glycemia in patients with type 2 diabetes mellitus. Journal of Diabetes Science and Technology, 5, 402–411.

    Article  Google Scholar 

  51. Fonda, S. J., Kedziora, R. J., Vigersky, R. A., & Bursell, S. E. (2010). Evolution of a web-based, prototype personal health application for diabetes self-management. Journal of Biomedical Informatics, 43(Suppl 5), S17–S21.

    Article  Google Scholar 

  52. Bridging the gap between personal and population health: Developing an interdisciplinary institute for emerging health technologies. Honolulu, Hawaii, 5–7 December 2007.

    Google Scholar 

  53. Bellin, E., Fletcher, D. D., Geberer, N., Islam, S., & Srivastava, N. (2010). Democratizing information creation from health care data for quality improvement, research, and education – The Montefiore medical center experience. Academic Medicine, 85, 1362–1368.

    Article  Google Scholar 

  54. Networking and Information Technology Research and Development Program (NITRD). (2009, February). High-confidence medical devices: Cyber-physical systems for 21st century health care – A research and development needs report (p. 88).

    Google Scholar 

  55. Mirhaji, P., Zhu, M., Vagnoni, M., Bernstam, E. V., Zhang, J., & Smith, J. W. (2009). Ontology driven integration platform for clinical and translational research. BMC Bioinformatics, 10(Suppl 2), S2. https://doi.org/10.1186/1471-2105-10-S2-S2.

    Article  Google Scholar 

  56. Working Group on Biomedical Computing, National Institutes of Health. (1999, June 3). The biomedical information science and technology initiative. Retrieved January 9, 2011, from http://acd.od.nih.gov/agendas/060399_Biomed_Computing_WG_RPT.htm

  57. Shafer, A. (2010, March 17). The Department of Defense S&T Program: Innovation, speed, and agility and the impact on MANPRINT. Presentation at the MANPRINT Practitioners Workshop 2010, Arlington, Virginia.

    Google Scholar 

  58. Jiang, X., Kumar, K., Hu, X., Wallqvist, A., & Reifman, J. (2008). DOVIS 2.0: An efficient and easy to use parallel virtual screening tool based on AutoDock 4.0. Chemistry Central Journal, 2, 18. https://doi.org/10.1186/1752-153X-2-18.

    Article  Google Scholar 

  59. Lee, M. S., Bondugula, R., Desai, V., Zavaljevski, N., Yeh, I.-C., Wallquist, A., & Reifman, J. (2009). PSPP: A protein structure prediction pipeline for computing clusters. PLoS One, 4, e6254.

    Article  Google Scholar 

  60. Vijaya Satya, R., Kumar, K., Zavaljevski, N., & Reifman, J. (2010). A high-throughput pipeline for the design of real-time PCR signatures. BMC Bioinformatics, 11, 340.

    Article  Google Scholar 

  61. Reifman, J. (2011, April 30). Decision support algorithm for diagnosing hemorrhage and trauma casualties. Presentation at US Army telemedicine partnership series 2011: Tip of the spear medicine – emerging technologies for special forces, Tampa, Florida.

    Google Scholar 

  62. Rajaraman, S., Gribok, A. V., Wesensten, N. J., Balkin, T. J., & Reifman, J. (2009). An improved methodology for individualized performance prediction of sleep-deprived individuals with the two-process model. Sleep, 32, 1377–1392.

    Article  Google Scholar 

  63. Gribok, A. V., Buller, M. J., Hoyt, R. W., & Reifman, J. (2010). A real-time algorithm for predicting core temperature in humans. IEEE Transactions on Information Technology in Biomedicine, 14, 1039–1045.

    Article  Google Scholar 

  64. Fang, X., Wallqvist, A., & Reifman, J. (2009). A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis. BMC Systems Biology, 3, 92.

    Article  Google Scholar 

  65. Mitrophanov, A. Y., & Reifman, J. (2011). Kinetic modeling sheds light on the mode of action of recombinant factor VIIa on thrombin generation. Thrombosis Research, 128(4), 381–390.

    Article  Google Scholar 

  66. Gani, A., Gribok, A. V., Lu, Y., Ward, W. K., Vigersky, R. A., & Reifman, J. (2010). Universal glucose models for predicting subcutaneous glucose concentration in humans. IEEE Transactions on Information Technology in Biomedicine, 14, 157–165.

    Article  Google Scholar 

  67. Steil, G. M., Hipszer, B., & Reifman, J. (2010). Update on mathematical modeling research to support the development of automated insulin delivery systems. Journal of Diabetes Science and Technology, 4, 759–769.

    Article  Google Scholar 

  68. Burton, A. (2011). Big science for a big problem: ADNI enters its second phase. Lancet Neurology, 10, 206–207.

    Article  Google Scholar 

  69. Friedl, K. E. (2008). Is it possible to monitor the warfighter for prediction of performance deterioration? In Workshop on Operational Fatigue. Technical Report RTO-HFM/WS-151 (pp. 7.1–7.10). Neuilly-sur-Seine Cedex: Research and Technological Organization, North Atlantic Treaty Organization.

    Google Scholar 

  70. Committee on Military Nutrition Research, Monitoring Metabolic Status. (2004). Predicting decrements in physiological and cognitive performance. Washington, DC: National Academies.

    Google Scholar 

  71. Research and Technological Organization, North Atlantic Treaty Organization. (2010). Real-time physiological and psych-physiological status monitoring. Technical report RTO-TR-HRM-132 AC/323(HFM-132)TP/283 (p. 120). Neuilly-sur-Seine Cedex: Research and Technological Organization, North Atlantic Treaty Organization.

    Google Scholar 

  72. Montgomery, K., Mundt, C., Thonier, G., Tellier, A., Udoh, U., Barker, V. et al. (2004, September 1–5). Lifeguard – A personal physiological monitor for extreme environments. In Engineering in Medicine and Biology Society, 2004, IEMBS’04, 26th Annual International Conference of the IEEE (pp. 2192–2195).

    Google Scholar 

  73. Weyand, P. G., Kelly, M., Blackadar, T., Darley, J. C., Oliver, S. R., Ohlenbusch, N. E., Joffe, S. W., & Hoyt, R. W. (2001). Ambulatory estimates of maximal aerobic power from foot-ground contact times and heart rates in running humans. Journal of Applied Physiology, 91, 451–458.

    Article  Google Scholar 

  74. Buller, B. J., Tharion, W. J., Hoyt, R. W., & Jenkins, O. C. (2010). Estimation of human internal temperature from wearable physiological sensors. In Proceedings of the Twenty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-10) (pp. 1763–1768).

    Google Scholar 

  75. O’Brien, C., Blanchard, L. A., Cadarette, B. S., Endrusick, T. L., Xu, X., Berglund, L. G., et al. (2011). Methods of evaluating protective clothing relative to heat and cold stress: Thermal manikin, biomedical modeling, and human testing. Journal of Occupational and Environmental Hygiene, 8, 588–599.

    Article  Google Scholar 

  76. Chen, L., Reisner, A. T., Gribok, A., & Reifman, J. (2010, Summer). Exploration of prehospital vital sign trends for the prediction of trauma outcomes. Journal of Special Operations Medicine, 10, 55–62.

    Article  Google Scholar 

  77. Chen, L., Reisner, A. T., Gribok, A., & Reifman, J. (2010). Is respiration-induced variation in the photoplethysmogram associated with major hypovolemia in patients with acute traumatic injuries? Shock, 34, 455–460.

    Article  Google Scholar 

  78. Reifman, J. (2008, April 5). Predicting an individual’s physiologic state without a crystal ball (DTIC Technical Report ADA 490361). Presentation at US Army telemedicine partnership series 2008: Personal health monitoring, Seattle, Washington (p. 31).

    Google Scholar 

  79. Ahmed, J., Ward, T. P., Bursell, S. V., Aiello, L. M., Cavallerano, J. D., & Vigersky, R. A. (2006). The sensitivity and specificity of nonmydriatic digital stereoscopic retinal imaging in detecting diabetic retinopathy. Diabetes Care, 29, 2205–2209.

    Article  Google Scholar 

  80. Klonoff, D. C., Zimliki, C. L., Stevens, A., Beaston, P., Pinkos, A., Choe, S. Y., et al. (2011). Innovations in technology for the treatment of diabetes: Clinical development of the artificial pancreas (an autonomous system). Journal of Diabetes Science and Technology, 5, 804–826.

    Article  Google Scholar 

  81. Friedl, K. E., & Santee, W. R. (Eds.). (2011). Military quantitative physiology: Problems and concepts in military operational medicine (p. 375). Fort Detrick, MD: Borden Institute.

    Google Scholar 

  82. Ness, J. W., Tepe, V., & Ritzer, D. R. (eds.). (2004). The science and simulation of human performance. Advances in human performance and cognitive engineering research (Vol. 5, p. 613). Oxford: Elsevier.

    Google Scholar 

  83. Stuhmiller, J. H., & Stuhmiller, L. M. (2001). An internal dose model for interspecies extrapolation of immediate incapacitation risk from inhalation of fire gases. Inhalation Toxicology, 14, 929–957.

    Article  Google Scholar 

  84. Chan, P. C., Ho, K. H., Kan, K. K., Stuhmiller, J. H., & Mayorga, M. A. (2001). Evaluation of impulse noise criteria using human volunteer data. The Journal of the Acoustical Society of America, 110, 1967–1975.

    Article  Google Scholar 

  85. Stuhmiller, J. H. (2006). Mathematical modeling in support of military operational medicine (Final Report DAMD17-00-C-0031). AD A458 419 (p. 76). San Diego, CA: Jaycor, Inc/L-3 Communications/Titan Corporation.

    Google Scholar 

  86. Shen, W., Niu, Y., Mattrey, R. F., Fournier, A., Corbeil, J., Kono, Y., et al. (2008). Development and validation of subject-specific finite element models for blunt trauma study. Journal of Biomechanical Engineering, 130, 021022.

    Article  Google Scholar 

  87. Constantin de Magny, G., Murtugudde, R., Sapiano, M. R., Nizam, A., Brown, C. W., Busalacchi, A. J., et al. (2008). Environmental signatures associated with cholera epidemics. Proceedings of the National Academy of Sciences, 105, 17676–17681.

    Article  Google Scholar 

  88. Lofgren, E. T., & Fefferman, N. H. (2007). The untapped potential of virtual game worlds to shed light on real world epidemics. Lancet Infectious Diseases, 7, 625–629.

    Article  Google Scholar 

  89. Hartley, D. M., Nelson, N. P., Walters, R., Arthur, R., Yangarber, R., Madoff, L., et al. (2010). Lanscape of international event-based biosurveillance. Emerging Health Threats Journal, 3, e3. https://doi.org/10.3134/ehtj.10.003.

    Article  Google Scholar 

  90. Merritt, D., Sodetz, F., Kroening, M., Littleford, A., & Hegge, F. W. (2000, April 12–14). Army Medical Knowledge Engineering System (AMKES)—A three-tier knowledge harvesting environment. In Proceedings of the 2nd International Conference on the Practical Applications of Java, Manchester, UK.

    Google Scholar 

  91. Coster, T. (2009, April 25). Pharmacovigilance program: An integrated approach. Presentation at TATRC Telemedicine Symposium on Empowering Personalized Health through Information Technology, American Telemedicine Association Annual Meeting, Las Vegas, Nevada.

    Google Scholar 

  92. Eastridge, B. J., Costanzo, G., Jenkins, D., Spott, M. A., Wade, C., Greydanus, D., et al. (2009). Impact of joint theater trauma system initiatives on battlefield injury outcomes. American Journal of Surgery, 198, 852–857.

    Article  Google Scholar 

  93. Champion, H. R., & Lawnick, M. M. (2006, August). Coding of the WDMET Database (Final Report. AD A352 444). Annapolis, MD: Technical Medical.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the helpful suggestions for this manuscript received from Betty Levine MS, Francis McVeigh OD, Dave Williams, Tom Bigott, and Gary Gilbert PhD. Since the preparation of this manuscript, an independent JPC1 office and infrastructure layer has been established, separating the programming, planning, and budgeting activities from the scientific and technical execution responsibilities for this research program.

This manuscript was originally prepared, reviewed, and cleared for a special issue of Military Medicine in 2012 that never materialized. KEF wrote the paper when he was the Chair of the Joint Programmatic Committee (JPC1) and Director of the Telemedicine and Advanced Technology Research Center (TATRC); TBT and SS also worked for TATRC and they contributed important concepts captured herein and in the initially funded JPC1 program in their capacities as JPC1 subgroup Chairs for the Med Sim Technical Working Group and Health IT Technical Working Group, respectively.

Disclaimer

The opinions and assertions in the paper are those of the authors and do not constitute an official position or view of the Department of the Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl E. Friedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedl, K.E., Talbot, T.B., Steffensen, S. (2019). Information Science and Technology: A New Paradigm in Military Medical Research. In: Daim, T., Dabić, M., Başoğlu, N., Lavoie, J.R., Galli, B.J. (eds) R&D Management in the Knowledge Era. Innovation, Technology, and Knowledge Management. Springer, Cham. https://doi.org/10.1007/978-3-030-15409-7_1

Download citation

Publish with us

Policies and ethics