Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Important concepts from continuum mechanics and shock physics are described. Plane shock waves are defined and categorized. Governing equations from geometrically nonlinear solid mechanics are presented. Continuum balance laws are discussed first, followed by derivation of the Rankine–Hugoniot jump conditions with emphasis on planar longitudinal shocks. Structured steady waves are analyzed. Supplemental relationships are derived in the context of the frequently used linear shock velocity versus particle velocity model. Material properties pertinent to the shock relations are tabulated for polycrystalline metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrens, T.: Shock wave techniques for geophysics and planetary physics. In: Sammis, C., Henyey, T. (eds.) Methods of Experimental Physics, vol. 24 A, pp. 185–235. Academic, New York (1987)

    Google Scholar 

  2. Antoun, T., Curran, D., Seaman, L., Kanel, G., Razorenov, S., Utkin, A.: Spall Fracture. Springer, New York (2002)

    Google Scholar 

  3. Casey, J.: On the derivation of jump conditions in continuum mechanics. Int. J. Struct. Chang. Solids 3, 61–84 (2011)

    Google Scholar 

  4. Clayton, J.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  Google Scholar 

  5. Clayton, J.: Methods for analysis and simulation of ballistic impact. Recent Pat. Eng. 11, 49–61 (2017)

    Article  Google Scholar 

  6. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Davison, L., Graham, R.: Shock compression of solids. Phys. Rep. 55, 255–379 (1979)

    Article  ADS  Google Scholar 

  8. Eringen, A.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  9. Germain, P., Lee, E.: On shock waves in elastic-plastic solids. J. Mech. Phys. Solids 21, 359–382 (1973)

    Article  ADS  Google Scholar 

  10. Graff, K.: Wave Motion in Elastic Solids. Oxford University Press, London (1975)

    MATH  Google Scholar 

  11. Graham, R.: Solids Under High-Pressure Shock Compression. Springer, New York (1993)

    Book  Google Scholar 

  12. Guinan, M., Steinberg, D.: Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements. J. Phys. Chem. Solids 35, 1501–1512 (1974)

    Article  ADS  Google Scholar 

  13. Jeanloz, R.: Shock wave equation of state and finite strain theory. J. Geophys. Res. 94, 5873–5886 (1989)

    Article  ADS  Google Scholar 

  14. Malvern, L.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs NJ (1969)

    Google Scholar 

  15. Marsh, S. (ed.): LASL Shock Hugoniot Data. University of California Press, Berkeley (1980)

    Google Scholar 

  16. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs NJ (1983)

    MATH  Google Scholar 

  17. McQueen, R., Marsh, S., Taylor, J., Fritz, J., Carter, W.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp. 294–417. Academic Press, New York (1970)

    Google Scholar 

  18. Murnaghan, F.: Finite Deformation of an Elastic Solid. Wiley, New York (1951)

    MATH  Google Scholar 

  19. Ruoff, A.: Linear shock-velocity-particle-velocity relationship. J. Appl. Phys. 38, 4976–4980 (1967)

    Article  ADS  Google Scholar 

  20. Steinberg, D.: Some observations regarding the pressure dependence of the bulk modulus. J. Phys. Chem. Solids 43, 1173–1175 (1982)

    Article  ADS  Google Scholar 

  21. Thurston, R.: Waves in solids. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI, pp. 109–308. Springer, Berlin (1974)

    Google Scholar 

  22. Truesdell, C., Toupin, R.: The classical field theories. In: Flugge, S. (ed.) Handbuch der Physik, vol. III, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  23. Wallace, D.: Thermodynamics of Crystals. Wiley, New York (1972)

    Book  Google Scholar 

  24. Williams, C., Ramesh, K., Dandekar, D.: Spall response of 1100-O aluminum. J. Appl. Phys. 111, 123528 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clayton, J.D. (2019). Shock Physics Fundamentals. In: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-15330-4_2

Download citation

Publish with us

Policies and ethics