Skip to main content

Uptake, Transport, and Remediation of Strontium

  • Chapter
  • First Online:
Strontium Contamination in the Environment

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 88))

Abstract

Strontium abundantly occurs in nature in the rocks and soils in the form of sulfate and carbonate minerals, i.e., celestite (SrSO4) and strontianite (SrCO3), in nonradioactive and nontoxic forms. However, a small amount of strontium as radioactive 90Sr has been contributed to the geo-environment by the anthropogenic activities of nuclear testing and fission reactions. The contamination caused by the radioactive by-products of such activities poses major concerns due to its ease of entry into the ecosystem. The 90Sr has a prolonged half-life of 28.9 years and can progressively enter into the geo-environment and also the life cycle of organisms living in close proximity to such contaminated sites. The mobility of 90Sr migration in the geo-environment is often favored due to its similarity to calcium ions but can be retarded through the strong interactions with soil organic materials, clay minerals, and other oxides present in the environment. Owing to the severity of radioactive Sr contamination, this chapter thus deals with the various pathways of strontium dispersal into the geo-environment. Additionally, for the contaminated sites, studies on sorption-desorption behavior for selection of suitable remediation technology are deliberated herein. This chapter also explores the extent to which phytoremediation, an in situ modification, can be used to reclaim soils contaminated with 90Sr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NISA (Nuclear and Industrial Safety Agency) (2011) About the evaluation of the state of reactor core of No. 1, 2 and 3 concerning the accident of the Tokyo Electric Power, Fukushima Daiichi Nuclear Power Plant

    Google Scholar 

  2. Kamei-Ishikawa N, Ito A, Umita T (2013) Fate of stable strontium in the sewage treatment process as an analog for radiostrontium released by nuclear accidents. J Hazard Mater 260:420–424

    Article  CAS  Google Scholar 

  3. Ramirez-Guinart O, Vidal M, Rigol A (2016) Univariate and multivariate analysis to elucidate the soil properties governing americium sorption in soils. Geoderma 269:19–26

    Article  CAS  Google Scholar 

  4. Musilli S, Nicolas N, El Ali Z, Orellana-Moreno P, Grand C, Tack K, Kerdine-Römer S, Bertho JM (2017) DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences. Sci Rep 7:41580

    Article  CAS  Google Scholar 

  5. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (1982) Ionizing radiation: sources and biological effects. UNIPUB No. E.82.IX.8, 06300P, New York

    Google Scholar 

  6. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources and effects of effects ionizing radiation: UNIPUB No. E.82.IX.8, 06300P, New York

    Google Scholar 

  7. Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin

    Book  Google Scholar 

  8. Ondov JM, Choquette CE, Zoller WH, Gordon GE, Blermann AH, Hef RE (1989) Atmospheric behavior of trace elements on particles emitted from a coal-fired power plant. Atmos Environ 23:2193–2204

    Article  CAS  Google Scholar 

  9. Furr AK, Parkinson TF, Hinrichs RA, Van Campen DR, Bache CA, Gutenmann WH, St John Jr LE, Pakkala IS, Lisk DJ (1977) National survey of elements and radioactivity in fly ashes: absorption of elements by cabbage grown in fly-ash soil mixtures. Environ Sci Technol 11:1194–1201

    Article  CAS  Google Scholar 

  10. Raven KP, Loeppert RH (1997) Heavy metal in the environment; trace element composition of fertilizers and soil amendments. J Environ Qual 26:551–557

    Article  CAS  Google Scholar 

  11. Jolly YN, Islam A, Akbar S (2013) Transfer of metals from soil to vegetables and possible health risk assessment. Springer-Plus 2:385–393

    Article  Google Scholar 

  12. Sarap NB, Janković MM, Dolijanović ŽK, Kovačević DÐ, Rajačić MM, Nikolić JD, Todorović DJ (2015) Soil-to-plant transfer factor for 90Sr and 137Cs. J Radioanal Nucl Chem 303:2523–2527

    CAS  Google Scholar 

  13. Veresoglou DS, Tsialtas T, Barbayiannis N, Zalidis GC (1995) Caesium and strontium uptake by two pasture plant species grown in organic and inorganic soils. Agric Ecosyst Environ 56:37–42

    Article  CAS  Google Scholar 

  14. Wang X, Chen C, Wang J (2017) Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs). Environ Sci Pollut Res Int 24:7668–7678

    Article  CAS  Google Scholar 

  15. Zhuang P, McBride MB, Xia H, Li N, Li Z (2009) Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ 407:1551–1561

    Article  CAS  Google Scholar 

  16. Casadesus J, Sauras-Yera T, Vallejo VR (2008) Predicting soil-to-plant transfer of radionuclides with a mechanistic model (BioRUR). J Environ Radioact 99:864–871

    Article  CAS  Google Scholar 

  17. Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86:646–652

    Article  CAS  Google Scholar 

  18. Velasco H, Ayub JJ, Sansone U (2009) Influence of crop types and soil properties on radionuclide soil-to-plant transfer factors in tropical and subtropical environments. J Environ Radioact 100:733–738

    Article  CAS  Google Scholar 

  19. IAEA (International Atomic Energy Agency) (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environment. Technical reports series no. 472, Vienna

    Google Scholar 

  20. Wang CJ, Wang JJ, Chiu CY, Lai SY, Lin YM (2000) Transfer factors of 90Sr from soil to the sweet potato collected in Taiwan. J Environ Radioact 47:15–27

    Article  CAS  Google Scholar 

  21. Narayana Y, Somashekarappa HM, Karunakara N, Avadhani DN, Mahesh HM, Siddappa K (2000) Prominent artificial radionuclide activity in the environment of coastal Karnataka on the southwest coast of India. J Radiol Prot 20:295–313

    Article  CAS  Google Scholar 

  22. Sarap NB, Jankoviać MM, Pantelić GK (2014) Validation of radiochemical method for the determination of 90Sr in environmental samples. Water Air Soil Pollut 225:1–12

    Article  CAS  Google Scholar 

  23. Askbrant S, Melin J, Sandalls J, Rauret G, Vallejo R, Hinton T, Cremers A, Vandecastelle C, Lewyckyj N, Ivanov YA, Firsakova SK, Arkhipov NP, Alexakhin R (1998) Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. J Environ Radioact 31:287–312

    Article  Google Scholar 

  24. Sasmaz A, Sasmaz M (2009) The phytoremediation potential for strontium of indigenous plants growing in a mining area. Environ Exp Bot 67:139–144

    Article  CAS  Google Scholar 

  25. Wang XS (2011) Batch sorption of lead (II) from aqueous solutions using natural kaolinite. Int J Environ Waste Manag 8:258–272

    Article  CAS  Google Scholar 

  26. IAEA (International Atomic Energy Agency) (1994) Handbook of transfer parameter values for the prediction of radionuclide transfer in temperate environments. Technical reports series no. 364, IAEA, Vienna

    Google Scholar 

  27. Robison WL, Conrado CL, Hamilton TF, Stoker AC (2000) The effect of carbonate soil on transport and dose estimates for long-lived radionuclides at a U.S. Pacific Test Site. J Radioanal Nucl Chem 24:459–465

    Article  Google Scholar 

  28. Lembrechts JF, Van Ginkel JH, Desmet G (1990) Comparative study on the uptake of 85Sr from nutrient solutions and potted soils by lettuce. Plant Soil 125:63–69

    Article  CAS  Google Scholar 

  29. Ward GM, Johnson JE (1965) The caesium-137 content of beef from dairy and feed lot cattle. Health Phys 11:95–100

    Article  CAS  Google Scholar 

  30. Ward GM, Johnson JE (1986) Validity of the term transfer coefficient. Health Phys 50:411–414

    CAS  Google Scholar 

  31. Coughtrey PJ (1990) Radioactivity transfer to animal products (EUR 12608 EN). Commission of the European Communities, Luxembourg 22(3)

    Google Scholar 

  32. Howard BJ, Beresford NA, Mayes RW, Hansen HS, Crout NMJ, Hove K (1997) The use of dietary calcium intake of dairy ruminants to predict the transfer coefficient of radiostrontium to milk. Radiat Environ Biophys 36:39–43

    Article  CAS  Google Scholar 

  33. Howard BJ, Beresford NA, Barnett CL, Fesenko S (2009) Radionuclide transfer to animal products: revised recommended transfer coefficient values. J Environ Radioact 100:263–273

    Article  CAS  Google Scholar 

  34. Calmon P, Thiry Y, Zibold G, Rantavaara A, Fesenko S (2009) Transfer parameter values in temperate forest ecosystems: a review. J Environ Radioact 100:757–766

    Article  CAS  Google Scholar 

  35. Brown J, Simmonds JR (1995) Farmland: a dynamic model for the transfer of radionuclides through terrestrial food chains. National Radiological Protection Board (NRPB-R273), International Nuclear Information System 26(24)

    Google Scholar 

  36. Russell RS (1966) Radioactive strontium in food chains: general review. In: Russell RS (ed) Radioactivity and human diet. Pergamon Press, Oxford, pp 173–186

    Google Scholar 

  37. Sirotkin AN (1978) Sr-90 excretion in milk of cows with different levels of calcium concentration and sources of calcium in ration. Agric Biol 13:234–237

    CAS  Google Scholar 

  38. O’Hara MJ, Burge SR, Grate JW (2009) Automated radioanalytical system for the determination of Sr-90 in environmental water samples by Y-90 Cherenkov radiation counting. Anal Chem 81:1228–1237

    Article  Google Scholar 

  39. Pors NS (2004) The biological role of strontium. Bone 35:583–588

    Article  Google Scholar 

  40. Pathak P, Sharma S (2018) Sorption isotherms, kinetics, and thermodynamics of contaminants in Indian soils. J Environ Health Sci Eng 144:04018109

    Google Scholar 

  41. Sharma S, Meenu PS, Latha RA, Shashank BS, Singh DN (2016) Characterization of sediments from the sewage disposal lagoons for sustainable development. Adv Civil Eng Mater 5:1–23

    Google Scholar 

  42. Choi S, O'Day PA, Rivera NA, Mueller KT, Vairavamurthy MA, Seraphin S, Chorover J (2006) Strontium speciation during reaction of kaolinite with simulated tank-waste leachate: bulk and microfocused EXAFS analysis. Environ Sci Technol 40:2608–2614

    Article  CAS  Google Scholar 

  43. Pathak P, Singh DN, Pandit GG, Rakesh RR (2014) Determination of distribution coefficient: a critical review. Int J Environ Waste Manag 14:27–64

    Article  Google Scholar 

  44. Pathak P (2017) An assessment of strontium sorption onto bentonite buffer material in waste repository. Environ Sci Polut Res 24:8825–8836

    Article  CAS  Google Scholar 

  45. Guimaraes V, Azenha M, Rocha F, Silva F, Bobos I (2015) Influence of pH, concentration and ionic strength during batch and flow-through continuous stirred reactor experiments of Sr2+-adsorption onto montmorillonite. J Radioanal Nucl Chem 303:2243–2255

    CAS  Google Scholar 

  46. Naidu R, Bolan NS, Kookana RS, Tiller KG (1994) Ionic strength and pH effects on the sorption of the cadmium and the surface charge of soils. Eur J Soil Sci 45:419–429

    Article  CAS  Google Scholar 

  47. Naidu AD, Rao BH, Shanthakumar S, Singh DN (2010) Determination of distribution coefficient of geomaterials and immobilizing agents. Can Geotech J 47:1139–1148

    Article  Google Scholar 

  48. Bell J, Bates TH (1988) Distribution coefficient of radionuclides between soils and ground water and their dependence on various test parameter. Sci Total Environ 69:297–317

    Article  CAS  Google Scholar 

  49. Celis R, Real M, Hermosin MC, Cornejo J (2005) Sorption and leaching behavior of polar aromatic acids in agricultural soils by batch and column leaching tests. Eur J Soil Sci 56:287–297

    Article  CAS  Google Scholar 

  50. Sellafield (2008) Land quality programme groundwater monitoring annual report. Sellafield. http://www.sellafieldsites.com/land/pages/groundwater_monitoring.html

  51. Marinin DV, Brown GN (2000) Studies of sorbent/ion-exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness ground waters. Waste Manag 20:545–553

    Article  CAS  Google Scholar 

  52. Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  53. Ahmad SHSS (1995) Competitive adsorption of 90Sr on soil sediments, pure clay phases and feldspar minerals. Appl Radiat Isot 46:287–292

    Article  CAS  Google Scholar 

  54. Wallace SH, Shaw S, Morris K, Small JS, Fuller AJ, Burke IT (2012) Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: implications for 90Sr mobility at contaminated nuclear sites. Appl Geochem 27:1482–1491

    Article  CAS  Google Scholar 

  55. Krouglov SV, Kurinov AD, Alexakhin RM (1998) Chemical fraction of 90Sr, 106Ru, 137Cs and 144Cs in Chernobyl-contaminated soils: an evolution in the course of time. J Environ Radioact 38:59–76

    Article  CAS  Google Scholar 

  56. Brady NC (1990) The nature and properties of soils. Macmillan Publishing Company, New York

    Google Scholar 

  57. Ivashkevich LS, Bondar YI (2006) Effect of basic chemical characteristics of soils on mobility of radionuclides in them. Radiochemistry 50:98–102

    Article  Google Scholar 

  58. Helling CS, Chesters G, Corey RB (1964) Contribution of organic matter and clay to soil cation-exchange capacity as affected by the pH of the saturating solution. Soil Sci 28:517–520

    Article  CAS  Google Scholar 

  59. Broadbent FE, Bradford GR (1952) Cation-exchange groupings in the soil organic fraction. Soil Sci 74:447–458

    Article  CAS  Google Scholar 

  60. US EPA (United Nations Environmental Protection Agency) (1998) Innovative site remediation technology, design & application. EPA/542/B-97/006, Liquid Extraction Technologies

    Google Scholar 

  61. FRTR (Federal Remediation Technologies Roundtable) (2004) Technology cost and performance, cap at DOE’s. Lawrence Livermore National Laboratory, Landfill

    Google Scholar 

  62. US EPA (United Nations Environmental Protection Agency) (1995) Contaminants and remedial options at selected metal contaminated sites. EPA/540/R-95/512

    Google Scholar 

  63. Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  64. McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  65. Schnoor JL (2002) Phytoremediation of soil and groundwater. Technology evaluation report TE-02-01, Prepared for the Ground-Water Remediation Technologies Analysis Center

    Google Scholar 

  66. Cunningham SD, Anderson TA, Schwab PA, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  67. Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  68. Schnoor JL (1997) Phytoremediation-technology evaluation report. The University of Iowa Department of Civil and Environmental Engineering and Center for Global and Regional Environmental Research Iowa City, Iowa for Ground-Water Remediation Technologies Analysis Center, Pittsburgh

    Google Scholar 

  69. Fuhrmann M, Lasat MM, Ebbs SD, Kochian LV, Cornish J (2002) Plant and environment interactions uptake of Cesium-137 and Strontium-90 from contaminated soil by three plant species; application to phytoremediation. J Environ Qual 31:904–909

    Article  CAS  Google Scholar 

  70. Khan SA, Riaz-ur-Rehman, Khan MA (1995) Sorption of strontium on bentonite. Waste Manag 15:641–650

    Article  CAS  Google Scholar 

  71. Lasat MM, Fuhrmann M, Ebbs S, Cornish J, Kochian L (1998) Phytoremediation of a radiocesium-contaminated soil: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J Environ Qual 27:165–169

    Article  CAS  Google Scholar 

  72. Rotkittikhun R, Kruatrachue M, Chaiyarat R, Ngernsansaruay C, Pokethitiyook P, Paijitprapaporn A, Baker AJM (2006) Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ Pollut 144:681–688

    Article  CAS  Google Scholar 

  73. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants: heavy metal tolerance in plants. In: Shaw AJ (ed) Evolutionary aspects. CRC Press, Boca Raton, pp 155–177

    Google Scholar 

  74. Ernst WHO (1975) Physiology of heavy metal resistance in plants, vol 2. In: Proceeding of international conference on heavy metals in the environment. Toronto, Canada, pp 121–213

    Google Scholar 

  75. Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bota Neerland 41:229–248

    Article  CAS  Google Scholar 

  76. Turner RG (1969) Heavy metal tolerance in plants. In: Rorison IH (ed) Ecological aspects of the mineral nutrition of plants. British ecological society symposium, vol 9. Blackwell Scientific Publications, Hoboken, pp 399–410

    Google Scholar 

  77. Harrison RM, Chirgawi MB (1989) The assessment of air and soil as contributors of some trace metals to vegetable plants: use of a filtered air growth cabinet. Sci Total Environ 83:13–34

    Article  CAS  Google Scholar 

  78. Boularbah A, Schwartz C, Bitton G, Aboudrar W, Ouhammou A, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: assessment of metal accumulation and toxicity in plants. Chemosphere 63:811–817

    Article  CAS  Google Scholar 

  79. Mganga N, Manoko MLK, Rulangaranga ZK (2011) Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. Tanz J Sci 37:109–119

    Google Scholar 

  80. Kalacska M, Arroyo-Mora P, Snirer E, Parent R (2011) A review of cannabis properties and experiments for its biological control. World wide weed: global trends in Cannabis cultivation and its control. Ashgate Publishing, Aldershot, pp 215–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susmita Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S. (2020). Uptake, Transport, and Remediation of Strontium. In: Pathak, P., Gupta, D. (eds) Strontium Contamination in the Environment. The Handbook of Environmental Chemistry, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-15314-4_6

Download citation

Publish with us

Policies and ethics