Skip to main content

Isotopes of Strontium: Properties and Applications

  • Chapter
  • First Online:

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 88))

Abstract

The chapter gives an overview of properties and application of stable and radioactive isotopes of strontium. Natural strontium consists of the following four stable isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.00%), and 88Sr (82.58%). Among them, 87Sr is a radiogenic isotope being the decay product of the long-lived natural beta-emitting isotope 87Rb; it is widely used in geology for rocks and minerals dating as well as for systematization of origin of various rock formations. A unique 87Sr/86Sr ratio in each region became a useful tool for tracing geographical origin of water, archaeological artifacts, and foods. Besides stable isotopes, a number of radioactive isotopes of strontium from 73Sr to 107Sr are also known; among them, relatively long-lived isotopes are 90Sr, 89Sr, 82Sr, and 85Sr. The most long-lived radioactive isotope 90Sr with the half-life of 28.9 years is one of the most contaminants of the environment because of radiation accidents. Being a significant component of irradiated nuclear fuel and radioactive waste after spent fuel reprocessing, 90Sr is used in production of radioisotope thermoelectric generators, as beta radiation sources for radiometric and dosimetry applications, as well as in nuclear medicine as a mother nuclide for isotopic generators of 90Y being used for therapy in oncology. Applications of 82Sr and 85Sr in nuclear imaging and 89Sr in radiotherapy are described in the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Magill J, Pfenning G, Dreher R, Soti Z (2012) Chart of the nuclides (Karlsruher Nuclidkarte)8th edn. Nucleonica GmbH, Karlsruhe

    Google Scholar 

  2. Titaeva NA (2000) Nuclear geochemistry2nd edn. MSU Publisher, Moscow

    Google Scholar 

  3. Amsellem E, Moynier F, Day JMD, Moreira M, Puchtel IS, Teng FZ (2018) The stable strontium isotopic composition of ocean island basalts, mid-ocean ridge basalts, and komatiites. Chem Geol 483:595–602

    Article  CAS  Google Scholar 

  4. Gregory FS, Reynolds BC, Kiczka M, Bourdon B (2010) Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochim Cosmochim Acta 74:2596–2614

    Article  Google Scholar 

  5. Halicz L, Segal I, Fruchter N, Stein M, Lazar B (2008) Strontium stable isotopes fractionate in the soil environments? Earth Planet Sci Lett 272:406–411

    Article  CAS  Google Scholar 

  6. De Paolo DJ, Wasserburg GJ (1976) Inferences about magma sources and mantle structure from variations of 143Nd/143Nd. Geophys Res Lett 13:743–746

    Google Scholar 

  7. Chaudhuri S (1978) Strontium isotopic composition of several oilfield brines from Kansas and Colorado. Geochim Cosmochim Acta 42:329–332

    Article  CAS  Google Scholar 

  8. Sahib LY, Marandi A, Schüth C (2016) Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region, Iraq. Sci Total Environ 562:935–945

    Article  CAS  Google Scholar 

  9. Vilomet JD, Angeletti B, Moustier S, Ambrosi JP, Wiesner M, Bottero JY, Snidaro LCH (2001) Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ Sci Technol 35:4675–4679

    Article  CAS  Google Scholar 

  10. Stevenson EI, Aciego SM, Chutcharavan P, Parkinson IJ, Burton KW, Blakowski MA, Arendt CA (2016) Insights into combined radiogenic and stable strontium isotopes as tracers for weathering processes in subglacial environments. Chem Geol 429:33–43

    Article  CAS  Google Scholar 

  11. Wei G, Ma J, Liu Y, Xie L, Lu W, Deng W, Ren Z, Zeng T, Yang Y (2013) Seasonal changes in the radiogenic and stable strontium isotopic composition of Xijiang River water: implications for chemical weathering. Chem Geol 343:67–75

    Article  CAS  Google Scholar 

  12. Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13:135–187

    Article  Google Scholar 

  13. Degryse P, Muynck D, Delporte S, Boyen S, Jadoul L, Winne JD, Ivaneanu T, Vanhaecke F (2012) Strontium isotopic analysis as an experimental auxiliary technique in forensic identification of human remains. Anal Method 4:2674–2677

    Article  CAS  Google Scholar 

  14. Gan YM, Towers J, Bradley RA, Pearson E, Nowell G, Peterkin J, Montgomery J (2018) Multi-isotope evidence for cattle droving at Roman Worcester. J Archaeol Sci Rep 20:6–17

    Google Scholar 

  15. Hughes SS, Millard AR, Chenery CA, Nowelld G, Pearson DG (2018) Isotopic analysis of burials from the early Anglo-Saxon cemetery at East Bourne, Sussex, UK. J Archaeol Sci Rep 19:513–525

    Google Scholar 

  16. Sheridan SG, Gregoricka LA (2015) Monks on the move: evaluating pilgrimage to byzantine St. Stephen’s monastery using strontium isotopes. Am J Phys Anthropol 158:581–591

    Article  Google Scholar 

  17. Slovak NM, Paytan A, Rick JW, Chien CT (2018) Establishing radiogenic strontium isotope signatures for Chavín de Huántar, Peru. J Archaeol Sci Rep 19:411–419

    Google Scholar 

  18. Turner BL, Kamenov GD, Kingston JD, Armelagos GJ (2009) Insights into immigration and social class at Machu Picchu, Peru based on oxygen, strontium, and lead isotopic analysis. J Archaeol Sci 36:317–332

    Article  Google Scholar 

  19. Ganio M, Gulmini M, Latruwe K, Vanhaecke F, Degryse P (2013) Sasanian glass from Veh Ardasır investigated by strontium and neodymium isotopic analysis. J Archaeol Sci 40:4264–4270

    Article  CAS  Google Scholar 

  20. Durante C, Baschieri C, Bertacchini L, Cocchi M, Sighinolfi S, Silvestri M, Marchetti A (2013) Geographical traceability based on 87Sr/86Sr indicator: a first approach for PDO Lambrusco wines from Modena. Food Chem 141:2779–2787

    Article  CAS  Google Scholar 

  21. Durante C, Baschieri C, Bertacchini L, Bertelli D, Cocchi M, Marchetti A, Manzini D, Papotti G, Sighinolfi S (2015) An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes. Food Chem 173:557–563

    Article  CAS  Google Scholar 

  22. Durante C, Bertacchini L, Bontempo L, Camin F, Manzini D, Lambertini P, Marchetti A, Paolini M (2016) From soil to grape and wine: variation of light and heavy elements isotope ratios. Food Chem 210:648–659

    Article  CAS  Google Scholar 

  23. Petrini R, Sansone L, Slejko FF, Buccianti A, Marcuzzo P, Tomasi D (2015) The 87Sr/86Sr strontium isotopic systematics applied to Glera vineyards: a tracer for the geographical origin of the Prosecco. Food Chem 170:138–144

    Article  CAS  Google Scholar 

  24. Vinciguerra V, Stevenson R, Pedneault K, Poirier A, Hélie JF, Widory D (2015) Strontium isotope characterization of wines from the Quebec (Canada) terroir. Proc Earth Planet Sci 13:252–255

    Article  Google Scholar 

  25. Marchionni S, Buccianti A, Bollati A, Braschi E, Cifelli F, Molin P, Parotto M, Mattei M, Tommasini S, Conticelli S (2016) Conservation of 87Sr/86Sr isotopic ratios during the winemaking processes of ‘red’ wines to validate their use as geographic tracer. Food Chem 190:777–785

    Article  CAS  Google Scholar 

  26. Di Vacri ML (2014) Use of Sr-resin for cheese geographical origin classification. Triskem users group meeting, Bath. http://www.triskem-international.com/scripts/files/59cf52569048b5.48524333/use_of_sr-resin_for_cheese_geographical_origin_classification.pdf. Accessed 05 July 2018

  27. Voerkelius S, Lorenz GD, Rummel S, Quеtel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelsberger P, Hoelzl S, Hoogewerff J, Ponzevera E, Van BM, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118:933–940

    Article  CAS  Google Scholar 

  28. Voronina AV, Betenekov ND, Semenishchev VS, Nedobukh TA (2015) Analysis of radionuclides in environmental samples. In: Walther C, Gupta DK (eds) Radionuclides in the environment. Influence of chemical speciation and plant uptake on radionuclide migration. Springer, Berlin, pp 231–253

    Google Scholar 

  29. IAEA (2018) Nuclear power reactors in the world. Reference data series No. 2. 2018 edition. IAEA, Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/RDS-2-38_web.pdf. Accessed 02 July 2018

  30. Kelley KK (2005) Wireless blade monitoring system and process, US patent number US7176812B1

    Google Scholar 

  31. Shaurina AM, Yakovlev VV (2015) Creation and consequences of use of radiological warfare as a terrorists’ weapon. Proceedings of international conference on days of science of Peter the Great. St. Petersburg Polytechnic University, St. Petersburg, pp 140–144

    Google Scholar 

  32. Adams R (1996) RTG heat sources: two proven materials. https://atomicinsights.com/rtg-heat-sources-two-proven-materials/. Accessed 01 July 2018

  33. Technical Report (1968) SNAP-21 program, phase II. Deep sea radioisotope-fueled thermoelectric generator power supply system. Quarterly report No. 9, July 1, 1968–September 30, 1968

    Google Scholar 

  34. IAEA (2013). https://www.iaea.org/OurWork/ST/NE/NEFW/Technical-Areas/WTS/CEG/documents/CEG-Workshop-Vienna-2013/Russian/2.7._Russian_RTG_program_Rus.pdf. Accessed 01 July 2018 (In Russian)

  35. Serebryakov BE (2017) RITEGs in Antarctica. http://www.proatom.ru/modules.php?name=News&file=article&sid=7515. Accessed 01 July 2018 (In Russian)

  36. Kirienko SV (2015) Report at Russian Government’s session from 16.11.2015. http://government.ru/news/20580/. Accessed 01 July 2018 (In Russian)

  37. Loborev VM, Pertsev SF, Fortov VE, Shilobreev BA (2014) Physics of nuclear blast. Development of blast, vol 1. Physical and Mathematical Literature, Moscow

    Google Scholar 

  38. Maximov AA, Gichev DV, Vysotsky VL, Filippov AS, Tagiltsev AA, Cheranev MY, Goncharov RA (2016) Search of an accidentally drowned radioisotope thermoelectric generator based on heat field in bottom layer of sea. Subaquat Stud Robototech 1:56–65

    Google Scholar 

  39. Luo N, Ulmen B, Miley GH (2010) Nanopore/multilayer isotope batteries using radioisotopes from nuclear wastes. In: Proceedings of the 8th annual international energy conversion engineering conference. AIAA 2010-7003

    Google Scholar 

  40. Miley GH, Lou N (2011) A nanopore multilayer isotope battery using radioisotopes from nuclear wastes. In: Proceedings of the 9th annual international energy conversion engineering conference, IECEC 2011

    Google Scholar 

  41. Oh K, Prelas MA, Rothenberger JB, Lukosi ED, Jeong J, Montenegro DE (2012) Theoretical maximum efficiencies of optimized slab and spherical beta voltaic systems utilizing Sulfur-35, Strontium-90, and Yttrium-90. Nucl Technol 179:234–242

    Article  CAS  Google Scholar 

  42. Steinfelds EV, Prelas MA, Loyalka SK, Tompson RV (2006) A comparison of the performance capabilities of radioisotope energy conversion systems, beta voltaic cells, and other nuclear batteries. Proceedings of the 2006 International Congress on Advances in Nuclear Power Plants, ICAPP’06, pp 2696–2706

    Google Scholar 

  43. Özkeçecі S, Koç R (2017) An experimental setup for study direct charge battery based on Sr-90. AIP Conf Proc 1815:060018

    Article  Google Scholar 

  44. Theirrattanakul S, Prelas M (2017) A methodology for efficiency optimization of beta voltaic cell design using an isotropic planar source having an energy dependent beta particle distribution. Appl Radiat Isotop 127:41–46

    Article  CAS  Google Scholar 

  45. Rischpler C, Paschali A, Anagnostopoulos C, Nekolla SG (2015) Cardiac PET for translational imaging. Curr Cardiol Rep 17:28

    Article  CAS  Google Scholar 

  46. Zhuikov BL (2014) Production of medical radionuclides in Russia: status and future – a review. Appl Radiat Isotop 84:48–56

    Article  CAS  Google Scholar 

  47. Do NV, Thanh KT, Khue PD, Hien NT, Kim G, Kim K, Shin SG, Cho MH, Kye YU (2018) Yield ratios of the isomeric pair 85m,gSr formed in natSr(γ,xn) reactions. Radiat Phys Chem 149:54–60

    Article  Google Scholar 

  48. Zhuikov BL (2016) Successes and problems in the development of medical radioisotope production in Russia. Phys Usp 59:481–486

    Article  CAS  Google Scholar 

  49. Artun O (2018) Calculation of productions of PET radioisotopes via phenomenological level density models. Radiat Phys Chem 149:73–83

    Article  CAS  Google Scholar 

  50. Fitzsimmons JM, Medvedev DG, Mausner LF (2016) Specific activity and isotope abundances of strontium in purified strontium-82. J Anal Atom Spectrom 31:458–463

    Article  CAS  Google Scholar 

  51. Chudakov VM, Zhuikov BL, Ermolaev SV, Kokhanyuk VM, Mostova MI, Zaitsev VV, Shatik SV, Kostenikov NA, Ryzhkova DV, Tyutin LA (2014) Characterization of a 82Rb generator for positron emission tomography. Radiochemistry 56:535–543

    Article  CAS  Google Scholar 

  52. Mangla A, Oliveros E, Williams KA, Kalra DK (2017) Cardiac imaging in the diagnosis of coronary artery disease. Curr Probl Cardiol 42:316–366

    Article  Google Scholar 

  53. Flemming WH, McIlraith JD, King ER (1961) Photoscanning of bone lesions utilizing strontium-85. Radiology 77:635–636

    Article  Google Scholar 

  54. Goldsmith SJ, Mihailovic J (2015) Guest editorial: skeletal nuclear medicine. Semin Nucl Med 45:2

    Article  Google Scholar 

  55. Nalapko TV, Skvortsov VG, Kharitonov YY, Epstein NB (2010) Radiopharmaceuticals for radionuclidic diagnostics of bone pathology (review). Pharm Chem J 44:504–506

    Article  CAS  Google Scholar 

  56. Mihailović J, Freeman L (2012) Bone: from planar imaging to SPECT & PET/CT. Arch Oncol 20:117–120

    Article  Google Scholar 

  57. Williams DF, Blahd W (1967) The diagnostic and prognostic value of strontium-85 photoscanning in carcinoma of the prostate. J Urol 97:1070–1071

    Article  CAS  Google Scholar 

  58. Audi G, Wapstra AH, Thibault C, Blachot J, Bersillon O (2003) The NUBASE evaluation of nuclear and decay properties. Nucl Phys A 729:3–128

    Article  Google Scholar 

  59. Bauman G, Charette M, Reid R, Sathya J (2005) Radiopharmaceuticals for the palliation of painful bone metastases – a systematic review. Radiother Oncol 75:258.E1–258.E13

    Article  Google Scholar 

  60. Storto G, Klain M, Paone G, Liuzzi R, Molino L, Marinelli A, Soricelli A, Pace L, Salvatore M (2006) Combined therapy of Sr-89 and zoledronic acid in patients with painful bone metastases. Bone 39:35–41

    Article  CAS  Google Scholar 

  61. Cipriani C, Atzei G, Argiro G, Boemi S, Shukla S, Rossi G, Sedda AF (1997) Gamma camera imaging of osseous metastatic lesions by strontium-89 bremsstrahlung. Eur J Nucl Med 24:1356–1361

    Article  CAS  Google Scholar 

  62. Oda H, Hara H, Ueda O, Kawamata H, Sakai H, Katou Y, Kida T, Kubota M (2010) Underlying examination in the imaging of 89Sr bremsstrahlung radiation. Jpn J Radiol Technol 66:764–773

    Article  Google Scholar 

  63. Owaki Y, Inoue K, Narita H, Tsuda K, Fukushi MR (2017) Characteristic X-ray imaging for palliative therapy using strontium-89 chloride: understanding the mechanism of nuclear medicine imaging of strontium-89 chloride. Radiol Phys Technol 10:227–233

    Article  Google Scholar 

  64. Chuvilin DY, Khvostionov VE, Markovskij DV, Pavshook VA, Ponomarev-Stepnoy NN, Udovenko AN, Shatrov AV, Vereschagin YI, Rice J, Tome LA (2007) Production of 89Sr in solution reactor. Appl Radiat Isotop 65:1087–1094

    Article  CAS  Google Scholar 

  65. Gholamzadeh Z, Feghhi S, Mirvakili SM, Joze-Vaziri A, Alizadeh M (2015) Computational investigation of 99Mo, 89Sr, and 131I production rates in a subcritical UO2(NO3)2 aqueous solution reactor driven by a 30-MeV proton accelerator. Nucl Eng Technol 47:875–883

    Article  CAS  Google Scholar 

  66. Varma RN, Rao KLN, Chavan GN, Balasubramanian KR, Murthy KS (1982) Separation of 89Sr from irradiated uranium using polyantimonic acid. In: Radiochem Rad Chem Symposium, Pune

    Google Scholar 

  67. Bombardieri E, Evangelista L, Ceresoli GL, Boccardo F (2016) Nuclear medicine and the revolution in the modern management of castration-resistant prostate cancer patients: from 223Ra-dichloride to new horizons for therapeutic response assessment. Eur J Nucl Med Mol Imaging 43:5–7

    Article  Google Scholar 

  68. Teo JY, Allen JC, Ng DC, Choo SP, Tai DWM, Chang JPE, Cheah FK, Chow PKH, Goh BKP (2016) A systematic review of contralateral liver lobe hypertrophy after unilobar selective internal radiation therapy with Y90. HPB 18:7–12

    Article  Google Scholar 

  69. Zalutsky MR (2004) Targeted radiotherapy of brain tumours. Br J Cancer 90:1469–1473

    Article  CAS  Google Scholar 

  70. Ambrosini V, Fani M, Fanti S, Forrer F, Maecke HR (2011) Radiopeptide imaging and therapy in Europe. J Nucl Med 52:42S–55S

    Article  CAS  Google Scholar 

  71. Denardo SJ, Denardo GL (2006) Targeted radionuclide therapy for solid tumors: an overview. Int J Radiat Oncol Biol Phys 66:S89–S95

    Article  CAS  Google Scholar 

  72. Bodei L, Cremonesi M, Grana CM, Chinol M, Baio SM, Severi S, Paganelli G (2012) Yttrium-labelled peptides for therapy of NET. Eur J Nucl Med Mol Imaging 39(Suppl 1):S93–S102

    Article  Google Scholar 

  73. Chong HS, Sun X, Chen Y, Sin I, Kang CS, Lewis MR, Liu D, Ruthengael V, Zhong Y, Wu N, Song HA (2015) Synthesis and comparative biological evaluation of bifunctional ligands for radiotherapy applications of 90Y and 177Lu. Bioorg Med Chem 23:1169–1178

    Article  CAS  Google Scholar 

  74. Pichestapong P, Sriwiang W, Injarean U (2016) Separation of Yttrium-90 from Strontium-90 by extraction chromatography using combined Sr resin and RE resin. Energy Procedia 89:366–372

    Article  CAS  Google Scholar 

  75. Lee JS, Park UJ, Son KJ, Han HS (2009) One column operation for 90Sr/90Y separation by using a functionalized-silica. Appl Radiat Isot 67:1332–1335

    Article  CAS  Google Scholar 

  76. Happel S, Streng R, Vater P, Ensinger W (2003) Sr/Y separation by supported liquid membranes based on nuclear track microfilters. Radiat Meas 36:761–766

    Article  CAS  Google Scholar 

  77. Tárkányi F, Hermanne A, Ditrói F, Takács S, Szücs Z, Brezovcsik K (2017) Investigation of activation cross sections for deuteron induced reactions on strontium up to 50 MeV. Appl Radiat Isotop 127:16–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sergeevich Semenishchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semenishchev, V.S., Voronina, A.V. (2020). Isotopes of Strontium: Properties and Applications. In: Pathak, P., Gupta, D. (eds) Strontium Contamination in the Environment. The Handbook of Environmental Chemistry, vol 88. Springer, Cham. https://doi.org/10.1007/978-3-030-15314-4_2

Download citation

Publish with us

Policies and ethics