Skip to main content

Citrus Reproductive Biology from Flowering to Fruiting

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Citrus reproductive biology is characterized by peculiar processes such as self-incompatibility, parthenocarpy, and nucellar embryony. The understanding of citrus flowering mechanism is quite important since it will lead to control of production quality, efficiency, and timing of crops. In cultivation and breeding programs of citrus, the flowering behavior is strictly related to juvenility and alternate bearing. In citrus fruit, the failure of the sexual reproductive process (e.g., female and/or male sterility) in parthenocarpic cultivars results in seedless fruits. In contrast to other fruit crops, sterility can be considered a benefit to avoid the presence of seeds, which is one of the main quality parameters for fresh citrus fruit consumption. Here we review the current state of knowledge about the genetic control of reproductive biology in several citrus and its closed related species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ai XY, Zhang JZ, Liu TJ, Hu CG (2016) PtFCA from precocious trifoliate orange is regulated by alternative splicing and affects flowering time and root development in transgenic Arabidopsis. Tree Genet Genomes 12:85. https://doi.org/10.1007/s11295-016-1035-6

    Article  Google Scholar 

  • Cameron JW, Soost RK (1979) Sexual and nucellar embryony in F1 hybrids and advanced crosses of Citrus with Poncirus. J Am Soc Hortic Sci 104:408–410

    Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61(1):51–94

    Article  Google Scholar 

  • Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai L, Ge X, Biswas MK, Deng X (2011a) Molecular analysis and expression of a floral organ-relative F-box gene isolated from ‘Zigui shatian’ pummelo (Citrus grandis Osbeck). Mol Biol Rep 38:4429–4436

    Article  CAS  PubMed  Google Scholar 

  • Chai L, Ge X, Biswas MK, Xu Q, Deng X (2011b) Self-sterility in the mutant ‘Zigui shatian’ pummelo (Citrus grandis Osbeck) is due to abnormal post-zygotic embryo development and not self-incompatibility. Plant Cell Tissue Organ Cult (PCTOC) 104:1–11

    Article  Google Scholar 

  • Chai L, Ge X, Xu Q, Deng X (2011c) CgSL2, an S-like RNase gene in ‘Zigui shatian’ pummelo (Citrus grandis Osbeck), is involved in ovary senescence. Mol Biol Rep 38:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chica EJ, Albrigo LG (2013a) Expression of flower promoting genes in sweet orange during floral inductive water deficits. J Am Soc Hortic Sci 138:88–94

    Article  CAS  Google Scholar 

  • Chica EJ, Albrigo LG (2013b) Changes in CsFT transcript abundance at the onset of low-temperature floral induction in sweet orange. J Am Soc Hortic Sci 138:184–189

    Article  CAS  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Book  Google Scholar 

  • Distefano G, Las Casas G, La Malfa S, Gentile A, Tribulato E, Herrero M (2009a) Pollen tube behavior in different mandarin hybrids. J Am Soc Hortic Sci 134:583–588

    Article  Google Scholar 

  • Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E (2009b) Histological and molecular analysis of pollen–pistil interaction in clementine. Plant Cell Rep 28:1439–1451

    Article  CAS  PubMed  Google Scholar 

  • Dornelas M, Camargo R, Figueiredo L, Takita M (2007) A genetic framework for flowering-time pathways in Citrus spp. Genet Mol Biol 30:769–779

    Article  CAS  Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Shimada T, Fujii H, Nishikawa F, Sugiyama A, Nakano M, Shimizu T, Kobayashi Y, Araki T, Peña L, Omura M (2009) Development of a CiFT co-expression system for functional analysis of gene in citrus flowers and fruit. J Jpn Soc Hortic Sci 78:74–83

    Article  CAS  Google Scholar 

  • García R, Asíns MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511–518

    Article  PubMed  Google Scholar 

  • Goldberg-Moeller R, Shalom L, Shlizerman L, Samuels S, Zur N, Ophir R, Blumwald E, Sadka A (2013) Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering control genes in Citrus buds. Plant Sci 198:46–57

    Article  CAS  PubMed  Google Scholar 

  • Iwamasa M, Ueno I, Nishiura M (1967) Inheritance of nucellar embryony in citrus. Bull Hortic Res 7:8–11

    Google Scholar 

  • Jeong S, Palmer TM, Lukowitz W (2011) The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr Biol 21:1268–1276

    Article  CAS  PubMed  Google Scholar 

  • Kakade V, Dubey AK, Sharma RM, Malik SK (2017) Gametophytic self-incompatibility causes seedlessness in ‘Kagzi Kalan’ lemon (Citrus limon). J Hortic Sci Biotechnol 92:303–312

    Article  Google Scholar 

  • Kepiro JL, Roose ML (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. Tree Genet Genomes 6:1–11

    Article  Google Scholar 

  • Khan MRG, Ai XY, Zhang JZ (2014) Genetic regulation off lowering time in annual and perennial plants. Wiley Interdiscip Rev 5:347–359. https://doi.org/10.1002/wrna.1215

    Article  CAS  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) APOMIXIS: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Malik SK, Pal D, Srinivasan R, Bhat SR (2014) Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus. Tree Genet Genomes 10:449–464

    Article  Google Scholar 

  • Li JX, Hou XJ, Zhu J, Zhou JJ, Huang HB, Yue JQ, Gao JY, Du YX, Hu CX, Hu CG, Zhang JZ (2017) Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits: a hypothetical model front. Plant Sci 8:1013. https://doi.org/10.3389/fpls.2017.01013

    Article  Google Scholar 

  • Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL (2010) PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74:129–142. https://doi.org/10.1007/s11103-010-9660-1

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L (2017) Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics MGG 292:325–341

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Yang X, Li H, Su S, Yi H, Chai L, Deng X (2015) De novo transcriptome assembly of pummelo and molecular marker development. PLoS One 10:e0120615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R, Deng X, Xu Q (2017) miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. Plant J 92(2):263–275. https://doi.org/10.1111/tpj.13650. Epub 2 Sept 2017

    Article  CAS  PubMed  Google Scholar 

  • Long JM, Liu Z, Wu XM, Fang YN, Jia HH, Xie ZZ, Deng XX, Guo WW (2016) Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis. J Exp Bot 67:5743–5756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord EM, Eckard KJ (1987) Shoot development in Citrus sinensis L. (Washington navel orange). II. Alteration of developmental fate of flowering shoots after GA3 treatment. Bot Gaz 148:17–22

    Article  CAS  Google Scholar 

  • Lush WM, Clarke AE (1997) Observations of pollen tube growth in Nicotiana alata and their implications for the mechanism of self-incompatibility. Sex Plant Reprod 10:27–35

    Article  Google Scholar 

  • Ma Y, Li Q, Hu G, Qin Y (2017) Comparative transcriptional survey between self-incompatibility and self-compatibility in Citrus reticulata Blanco. Gene 609:52–61

    Article  CAS  PubMed  Google Scholar 

  • Miao HX, Qin YH, Teixeira da Silva JA, Ye ZX, Hu GB (2011a) Cloning and expression analysis of S-RNase homologous gene in Citrus reticulata Blanco cv. Wuzishatangju. Plant Sci Int J Exp Plant Biol 180:358–367

    CAS  Google Scholar 

  • Miao HX, Qin YH, Teixeira Da Silva JA, Ye ZX, Hu GB (2011b) Isolation and differential expression analysis of self-compatibility-related genes from mature pistils of ‘Shatangju’ mandarin (Citrus reticulata Blanco). J Hortic Sci Biotechnol 86:575–582

    Article  CAS  Google Scholar 

  • Monselise S, Goldschmidt E (1982) Alternate bearing in fruit trees. Hortic Rev 4:128–173

    Google Scholar 

  • Muñoz-Fambuena N, Mesejo C, González-Mas M, Iglesias D, Primo-Millo E, Agustí M (2012) Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression. J Plant Growth Regul 31:529–536

    Article  CAS  Google Scholar 

  • Muñoz-Fambuena N, Mesejo C, González-Mas M, Primo-Millo E, Agustí M, Iglesias D (2011) Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann Bot 108:511–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakanishil T, Yamazaki T, Funadera K, Tomonaga H, Ozaki T, Kawai Y, Ichii T, Satoh Y, Kurihara A (1992) Isoelectric focusing analysis of stylar proteins associated with self-incompabibility alleles in Japanese pear. J Jpn Soc Hortic Sci 61:239–248

    Article  Google Scholar 

  • Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M, Ebina M, Shimizu T, Omura M (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142

    Article  CAS  PubMed  Google Scholar 

  • Nakano M, Kigoshi K, Shimizu T, Endo T, Shimada T, Fujii H, Omura M (2013) Characterization of genes associated with polyembryony and in vitro somatic embryogenesis in citrus. Tree Genet Genomes 9:795–803

    Article  Google Scholar 

  • Nakano M, Shimizu T, Fujii H, Shimada T, Endo T, Nesumi H, Kuniga M, Omura M et al (2008a) Marker enrichment and construction of haplotype-specific BAC contigs for the polyembryony genomic region in citrus. Breed Sci 58:375–383

    Article  CAS  Google Scholar 

  • Nakano M, Shimizu T, Kuniga T, Nesumi H, Omura M (2008b) Mapping and haplotyping of the flanking region of the polyembryony locus in citrus unshiu Marcow. J Jpn Soc Hortic Sci 77:109–114

    Article  CAS  Google Scholar 

  • Newbigin E, Anderson MA, Clarke AE (1993) Gametophytic self-incompatibility systems. Plant Cell 5:1315–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo BX, Wakana A, Kim JH, Mori T, Sakai AK (2010) Estimation of self-incompatibility S genotypes of Citrus cultivars and plants based on controlled pollination with restricted number of pollen grains. J Fac Agr Kyushu Univ 55:67–72

    Google Scholar 

  • Ngo BX, Wakana A, Park SM, Nada Y, Fukudome I (2001) Pollen tube behaviors in self-incompatible and self-compatible Citrus cultivars. J Fac Agric Kyushu Univ 45:443–457

    Google Scholar 

  • Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58:3915–3927

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa F, Iwasaki M, Fukamachi H, Endo T (2017) Predicting the number of flowers in Satsuma Mandarin (Citrus unshiu Marc.) trees based on Citrus FLOWERING LOCUS T mRNA levels. Hortic J 86 (3):305–310

    Google Scholar 

  • Nishikawa F, Iwasaki M, Fukamachi H, Endo T (2013) Leaf removal suppresses citrus FLOWERING LOCUS T ex-pression in satsuma mandarin. Bull Natl Inst Fruit TreeSci 15:1–6

    Google Scholar 

  • Nishikawa F, Iwasaki M, Fukamachi H, Nonaka K, Imai A, Takishita F, Yano T, Endo T (2012) Fruit bearing suppresses citrus FLOWERING LOCUS T expression in vegetative shoots of satsuma mandarin (Citrus unshiu Marc.). J Jpn Soc Hortic Sci 81:48–53

    Article  CAS  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25(2):199–214

    Article  Google Scholar 

  • Pajon M, Moore GA, Febres VJ (2017) Expression patterns of flowering genes in leaves of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osbeck). BMC Plant Biol 17(1):146

    Google Scholar 

  • Parlevliet JE, Carmenon JW (1959) Evidence on the inheritance of nucellar embryony in citrus. Proc Am Soc Hortic Sci 74:252–260

    Google Scholar 

  • Peña L, Martín-Trillo M, Juárez J, Pina J, Navarro L, Martínez-Zapater J (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biothechnol 19:263–267

    Article  Google Scholar 

  • Pillitteri L, Lovatt C, Walling L (2004a) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135:1540–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillitteri L, Lovatt C, Walling L (2004b) Isolation and characterization of LEAFY and APETALA1homologues from Citrus sinensis L. Osbek ‘Washington’. J Am Soc Hortic Sci 129:846–856

    Article  CAS  Google Scholar 

  • Qin X, Xiong J, Yang J, Wan S, Wei S (2008) Construction and analysis of suppression subtractive hybridization library related to Gametophytic self-incompatibility in style of Citrus grandis var. shatinyu. Hortic J Trop Subtrop Bot 16:425–429

    CAS  Google Scholar 

  • Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071

    Article  Google Scholar 

  • Samach A (2012) Congratulations, you have been carefully chosen to represent an important developmental regulator! Ann Bot 111:329–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M, Ophir R, Blumwald E, Sadka A (2012) Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON versus OFF-Crop Trees. PLoS One 7:e46930. https://doi.org/10.1371/journal.pone.00430. https://www.plosone.org/

  • Shimada T, Endo T, Fujii H, Nakano M, Sugiyama A, Daido G, Ohta S, Yoshioka T, Omura M (2018) MITE insertion-dependent expression of CitRKD1 with a RWP-RK domain regulates somatic embryogenesis in citrus nucellar tissues. BMC Plant Biol 18:166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Spiegel‐Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, Cambridge

    Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187

    Article  CAS  PubMed  Google Scholar 

  • Sun LM, Zhang JZ, Hu CG (2016) Characterization and expression analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-Type MADS-Box Gene from Trifoliate Orange (Poncirus trifoliata L. Raf.). Front Plant Sci 7:823

    Google Scholar 

  • Tan FC, Swain S (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131:481–495

    Article  CAS  PubMed  Google Scholar 

  • Uchida A, Sassa H, Takenaka S, Sakakibara Y, Suiko M, Kunitake H (2012) Identification of self-incompatibility related proteins in the pistil of Japanese pear [Pyrus pyrifolia (Burm. f.)] by proteome analysis. Plant Omics J 5:320–325

    CAS  Google Scholar 

  • Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet MGG 260:261–268

    Article  CAS  PubMed  Google Scholar 

  • Velázquez K, Aguero J, Vives MC, Aleza P, Pina JA, Moreno P, Navarro L, Guerri J (2016) Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnol J 14:1976–1985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakana A, Ngo BX, Fukudome I, Kajiwara K (2004) Estimation of the degree of self-incompatibility reaction during flower bud development and production of selffertilized seeds by bud pollination in self-incompatible Citrus cultivars. J Fac Agr Kyushu Univ 49:307–320

    Google Scholar 

  • Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K (2011) The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr Biol 21:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J, Wu G, Tian S, Chen C, Liu Y, Yu H, Yang X, Lan H, Wang N, Wang L, Xu J, Jiang X, Xie Z, Tan M, Larkin RM, Chen LL, Ma BG, Ruan Y, Deng X, Xu Q (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Kubo T, Tominaga S (2006) Self-and cross-incompatibility of various citrus accessions. J Jpn Soc Hortic Sci 75(5):372–378

    Article  Google Scholar 

  • Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG (2009a) PtFLChomologfrom trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847–859

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tao N, Xu Q, Zhou W, Cao H, Xu J, Deng X (2009b) Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep 28(11):1737

    Article  CAS  PubMed  Google Scholar 

  • Zhang SW, Ding F, He XH, Luo C, Huang GX, Hu Y (2015) Characterization of the 'Xiangshui' lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol Genet Genomics 290:365–375

    Article  CAS  PubMed  Google Scholar 

  • Zheng BB, Wu XM, Ge XX, Deng XX, Grosser JW, Guo WW (2012) Comparative transcript profiling of a Male Sterile Cybrid Pummelo and Its fertile type revealed altered gene expression related to flower development. PLoS One 7(8):e43758. https://doi.org/10.1371/journal.pone.0043758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano Distefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Distefano, G., Las Casas, G., Deng, X., Chai, L. (2020). Citrus Reproductive Biology from Flowering to Fruiting. In: Gentile, A., La Malfa, S., Deng, Z. (eds) The Citrus Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-15308-3_9

Download citation

Publish with us

Policies and ethics