Skip to main content

A Phase-Space Approach to Non-stationary Nonlinear Systems

  • Conference paper
  • First Online:
11th Chaotic Modeling and Simulation International Conference (CHAOS 2018)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

Abstract

A phase-space formulation of non-stationary nonlinear dynamics including both Hamiltonian (e.g., quantum-cosmological) and dissipative (e.g., dissipative laser) systems reveals an unexpected affinity between seemly different branches of physics such as nonlinear dynamics far from equilibrium, statistical mechanics, thermodynamics, and quantum physics. One of the key insights is a clear distinction between the “vacuum” and “squeezed” states of a non-stationary system. For a dissipative system, the “squeezed state” (or the coherent “condensate”) mimics vacuum one and can be very attractable in praxis, in particular, for energy harvesting at the ultrashort time scales in a laser or “material laser” physics including quantum computing. The promising advantage of the phase-space formulation of the dissipative soliton dynamics is the possibility of direct calculation of statistical (including quantum) properties of coherent, partially-coherent, and non-coherent dissipative structure without numerically consuming statistic harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2002)

    MATH  Google Scholar 

  2. S.V. Anischenko, S.L. Cherkas, V.L. Kalashnikov, Functional minimization method addressed to the vacuum finding for an arbitrary driven quantum oscillator. Nonlinear Phenom. Complex Syst. 12(1), 16–26 (2009). (arXiv:0806.1593 [quant-ph])

  3. S.L. Cherkas, V.L. Kalashnikov, Quantum evolution of the universe in the constrained quasi-Heisenberg picture: from quanta to classics? J. Gravit. Cosmol. 12(2–3), 126–129 (2006). (arXiv:gr-qc/0512107)

  4. B.S. DeWitt, Dynamical theory in curved spaces. I. A review of the classical and quantum action principles. Rev. Mod. Phys. 29, 377–397 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Bojowald, The Universe: A View from Classical and Quantum Gravity (Wiley-VCH, Weinheim, 2013)

    MATH  Google Scholar 

  6. S.L. Cherkas, V.L. Kalashnikov, Quantum mechanics allows setting initial conditions at a cosmological singularity: Gowdy model example. Theor. Phys. 2(3), 124–135 (2017). (arXiv:1504.06188 [gr-qc])

  7. V.L. Kalashnikov, Optics and Chaos: Chaotic, Rogue and Noisy Optical Dissipative Solitons, in Handbook of Applications of Chaos Theory, ed. by ChH Skiadas, Ch. Skiadas (Chapman and Hall, Boca Raton, 2016), pp. 587–626

    Chapter  Google Scholar 

  8. R. Jordan, B. Turkington, C.L. Zirbel, A mean-field statistical theory for the nonlinear Schrödinger equation. Physica D 137(3–4), 353–378 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Dyachenko, A.C. Newell, A. Pushkarev, V.E. Zakharov, Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Physica D 57(1–2), 96–160 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Y. Lai, H.A. Haus, Quantum theory of solitons in optical fibers. II. Exact solution. Phys. Rev. A 40(2), 854–866 (1989)

    Article  ADS  Google Scholar 

  11. V.L. Kalashnikov, E. Sorokin, Self-Organization, Coherence and Turbulence in Laser Optics, in Complexity in Biological and Physical Systems, ed. by R. Lopez-Ruiz (IntechOpen, London, 2018), pp. 97–112

    Google Scholar 

  12. D.J. Benney, A.C. Newell, The propagation of nonlinear wave envelopes. J. Math. Phys. 4, 133–139 (1967)

    Article  MathSciNet  Google Scholar 

  13. C. Connaughton, Ch. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Condensation of classical nonlinear waves. Phys. Rev. Lett. 95, 26, 263901 (2005)

    Article  Google Scholar 

  14. V.L. Kalashnikov, E. Sorokin, Turbulence of Optical Dissipative Solitons, in Chaotic Modeling and Simulation (2018), April Issue, pp. 125–137

    Google Scholar 

  15. G.S. Agarwal, E. Wolf, Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators. Phys. Rev. D 2(10), 2161–2186 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  16. W.B. Case, Wigner functions and Weyl transforms for pedestrians. Am. J. Phys. 76(10), 937–946 (2008)

    Article  ADS  Google Scholar 

  17. D. Dragoman, Wigner distribution function in nonlinear optics. Appl. Opt. 35, 4142–4146 (1996)

    Article  ADS  Google Scholar 

  18. B. Hall, M. Lisak, D. Anderson, R. Fedele, V.E. Semenov, Phys. Rev. E 65, 035602(R) (2002)

    Article  ADS  Google Scholar 

  19. J. Garnier, M. Lisak, A. Picozzi, Toward a wave turbulence formulation of statistical nonlinear optics. J. Opt. Soc. Am. B 29, 2229–2242 (2012)

    Article  ADS  Google Scholar 

  20. G.P. Agrawal, Nonlinear Fiber Optics (Elsevier, Amsterdam, 2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Kalashnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalashnikov, V.L., Cherkas, S.L. (2019). A Phase-Space Approach to Non-stationary Nonlinear Systems. In: Skiadas, C., Lubashevsky, I. (eds) 11th Chaotic Modeling and Simulation International Conference. CHAOS 2018. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-15297-0_13

Download citation

Publish with us

Policies and ethics