Skip to main content

Abstract

In this chapter, our first idea is to improve the speed of convergence of the Secant method by means of iterative processes free of derivatives of the operator in their algorithms. To achieve this, we consider a uniparametric family of Secant-like methods previously constructed. We analyze the semilocal convergence of this uniparametric family of iterative processes by using a technique that consists of a new system of recurrence relations.

This research has been supported in part by the project MTM2014-52016-C2-1-P of the Spanish Ministry of Economy and Competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Alarcón, S. Amat, S. Busquier, D.J. López, A Steffensen’s type method in Banach spaces with applications on boundary-value problems. J. Comput. Appl. Math. 216, 243–250 (2008)

    MathSciNet  MATH  Google Scholar 

  2. S. Amat, S. Busquier, On a higher order secant method. Appl. Math. Comput. 141, 321–329 (2003)

    MathSciNet  MATH  Google Scholar 

  3. S. Amat, S. Busquier, A modified secant method for semismooth equations. Appl. Math. Lett. 16, 877–881 (2003)

    MathSciNet  MATH  Google Scholar 

  4. S. Amat, M. Grau-Sánchez, M. Noguera, On the approximation of derivatives using divided differences operators preserving the local convergence order of iterative methods. J. Comput. Appl. Math. 237, 363–372 (2013)

    MathSciNet  MATH  Google Scholar 

  5. A.A. Andronow, C.E. Chaikin, Theory of Oscillations (Princeton University Press, Princeton, 1949)

    MATH  Google Scholar 

  6. I.K. Argyros, The Secant method and fixed points of nonlinear operators. Monatshefte für Mathematik 106, 85–94 (1988)

    MathSciNet  MATH  Google Scholar 

  7. I.K. Argyros, The Newton-Kantorovich Method under mild differentiability conditions and the Ptâk error estimates. Monatshefte für Mathematik 109, 175–193 (1990)

    MathSciNet  MATH  Google Scholar 

  8. I.K. Argyros, On the Secant method. Publ. Math. Debrecen 43(3–4), 223–238 (1993)

    MathSciNet  MATH  Google Scholar 

  9. I.K. Argyros, Some methods for finding error bounds for Newton-like methods under mild differentiability conditions. Acta Math. Hung. 61, 183–194 (1993)

    MathSciNet  MATH  Google Scholar 

  10. I.K. Argyros, A convergence theorem for Newton-like methods under generalized Chen-Yamamoto-type assumptions. Appl. Math. Comput. 61, 25–37 (1994)

    MathSciNet  MATH  Google Scholar 

  11. I.K. Argyros, Newton-like methods under mild differentiability conditions with error analysis. Bull. Austral. Math. Soc. 37, 131–147 (1998)

    MathSciNet  MATH  Google Scholar 

  12. I.K. Argyros, S.K. Khattri, On the secant method. J. Complex. 29(6), 454–471 (2013)

    MathSciNet  MATH  Google Scholar 

  13. I.K. Argyros, Á.A. Magreñán, A unified convergence analysis for secant-type methods. J. Korean Math. Soc. 51(6), 1155–1175 (2014)

    MathSciNet  MATH  Google Scholar 

  14. I.K. Argyros, Á.A. Magreñán, Relaxed secant-type methods. Nonlinear Stud. 21(3), 485–503 (2014)

    MathSciNet  MATH  Google Scholar 

  15. I.K. Argyros, H. Ren, On an improved local convergence analysis for the Secant method. Numer. Algor. 52, 257–271 (2009)

    MathSciNet  MATH  Google Scholar 

  16. M. Balazs, G. Goldner, On existence of divided differences in linear spaces. Rev. Anal. Numer. Theor. Approx. 2, 3–6 (1973)

    MathSciNet  MATH  Google Scholar 

  17. D.D. Bruns, J.E. Bailey, Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)

    Google Scholar 

  18. J. Chen, Z. Shen, Convergence analysis of the secant type methods. Appl. Math. Comput. 188, 514–524 (2007)

    MathSciNet  MATH  Google Scholar 

  19. K. Deimling, Nonlinear Functional Analysis (Springer, Berlin, 1985)

    MATH  Google Scholar 

  20. J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in Article in Nonlinear Functional Analysis and Applications, ed. by L.B. Rall (Academic Press, New York, 1970), pp. 425–472

    Google Scholar 

  21. P. Deuflhard, G. Heindl, Affine invariant convergence theorems for Newton’s method and extensions to related methods. Siam J. Numer. Anal. 16, 1–10 (1979)

    MathSciNet  MATH  Google Scholar 

  22. J.A. Ezquerro, M.A. Hernández, Multipoint super-Halley type approximation algorithms in Banach spaces. Numer. Funct. Anal. Optimiz. 21, 845–858 (2000)

    MathSciNet  MATH  Google Scholar 

  23. J.A. Ezquerro, M.A. Hernández, A.I. Velasco, An analysis of the semilocal convergence for Secant-like methods. Appl. Math. Comput. 266, 883–892 (2015)

    MathSciNet  MATH  Google Scholar 

  24. M. Ganesh, M.C. Joshi, Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)

    MathSciNet  MATH  Google Scholar 

  25. J.M. Gutiérrez, M.A. Hernández, New recurrence relations for Chebyshev method. Appl. Math. Lett. 10, 63–65 (1997)

    MathSciNet  MATH  Google Scholar 

  26. M.A. Hernández, M.J. Rubio, A new type of recurrence relations for the Secant method. Int. J. Comput. Math. 72, 477–490 (1999)

    MathSciNet  MATH  Google Scholar 

  27. M.A. Hernández, M.J. Rubio, A uniparametric family of iterative processes for solving nondifferentiable equations. J. Math. Anal. Appl. 275, 821–834 (2002)

    MathSciNet  MATH  Google Scholar 

  28. M.A. Hernández, M.J. Rubio, Solving a special case of conservative problems by secant-like methods. Appl. Math. Comput. 169(2), 926–942 (2005)

    MathSciNet  MATH  Google Scholar 

  29. M.A. Hernández, M.J. Rubio, On the ball of convergence of Secant-like methods for non-differentiable operators. Appl. Math. Comput. 273, 506–512 (2016)

    MathSciNet  MATH  Google Scholar 

  30. M.A. Hernández, M.J. Rubio, J.A. Ezquerro, Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115, 245–254 (2000)

    MathSciNet  MATH  Google Scholar 

  31. M.A. Hernández, M.A. Salanova, Chebyshev method and convexity. Appl. Math. Comput. 95, 51–62 (1998)

    MathSciNet  MATH  Google Scholar 

  32. R. Hongmin, W. Qingiao, The convergence ball of the Secant method under Hölder continuous divided differences. J. Comput. Appl. Math. 194, 284–293 (2006)

    MathSciNet  MATH  Google Scholar 

  33. L. Kewei, Homocentric convergence ball of the Secant method. Appl. Math. J. Chinese Univ. Ser. B 22(3), 353–365 (2007)

    MathSciNet  MATH  Google Scholar 

  34. S. Kumar, H. Sloan, A new collocation-type method for Hammerstein integral equations. Math. Comput. 48, 585–593 (1987)

    MathSciNet  MATH  Google Scholar 

  35. A.M. Ostrowski, Solutions of Equations and System of Equations (Academic Press, New York, 1960)

    Google Scholar 

  36. D. Porter, D.S.G. Stirling, Integral Equations (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  37. F.A. Potra, On a modified Secant method. Nal. Numer. Theor. Approx. 8, 203–214 (1979)

    MathSciNet  MATH  Google Scholar 

  38. F.A. Potra, V. Pták, Nondiscrete induction and iterative methods (Pitman Publishing Limited, London, 1984)

    MATH  Google Scholar 

  39. J. Rashidinia, M. Zarebnia, New approach for numerical solution of Hammerstein integral equations. Appl. Math. Comput. 185, 147–154 (2007)

    MathSciNet  MATH  Google Scholar 

  40. H. Ren, I.K. Argyros, Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. Comput. 218, 7655–7664 (2012)

    MathSciNet  MATH  Google Scholar 

  41. J. Rokne, Newton’s method under mild differentiability conditions with error analysis. Numer. Math. 18, 401–412 (1972)

    MathSciNet  MATH  Google Scholar 

  42. J.W. Schmidt, Regula-falsi Verfahren mit konsistenter Steigung und Majoranten prinzip. Period. Math. Hung. 5, 187–193 (1974)

    MATH  Google Scholar 

  43. A. Sergeev, On the method of chords. Sibirsk. Mat. Z̆. 2, 282–289 (1961)

    Google Scholar 

  44. S. Shakhno, On the Secant method under generalized Lipschitz conditions for the divided difference operator. PAMM-Proc. Appl. Math. Mech. 7, 2060083–2060084 (2007)

    Google Scholar 

  45. J.J. Stoker, Nonlinear Vibrations (Interscience-Wiley, New York, 1950)

    MATH  Google Scholar 

  46. J.F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, 1964)

    MATH  Google Scholar 

  47. W. Werner, Newton-like methods for the computation of fixed points. Comp. & Maths. Appls. 10, 77–86 (1984)

    MathSciNet  MATH  Google Scholar 

  48. T. Yamamoto, A note on a posteriori error bound of Zabrejko and Nguen for Zicenko’s iteration. Numer. Funct. Anal. Optimiz. 9, 987–994 (1987)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hernández-Verón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Argyros, I.K., Hernández-Verón, M.A., Rubio, M.J. (2019). On the Convergence of Secant-Like Methods. In: Dutta, H., Kočinac, L.D.R., Srivastava, H.M. (eds) Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15242-0_5

Download citation

Publish with us

Policies and ethics