Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 618 Accesses

Abstract

As the only rare earth nickelate that does not exhibit the rich phases and transitions of the rest of the family, LaNiO\(_3\) has, in recent years, mainly been studied with the notion of high temperature superconductivity as the motivation. As discussed in Sect. 3.6, it was predicted that superlattices that alternate a metallic 1 u.c. layer of LaNiO\(_3\) with a non-transition metal perovskite oxide band insulator may provide a welcome environment for superconductivity, analogous to the high temperature superconducting cuprates. Besides the likely issue that the electronic configuration of the nickelates is not as similar to the cuprates as it may first appear, there is also a challenge in understanding the behaviour of LaNiO\(_3\) in the ultrathin limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherwitzl R, Zubko P, Lichtensteiger C, Triscone JM (2009) Electric-field tuning of the metal-insulator transition in ultrathin films of LaNiO\(_3\). Appl Phys Lett 95(22):1–4

    Article  Google Scholar 

  2. Son J, Moetakef P, Lebeau JM, Ouellette D, Balents L, Allen SJ, Stemmer S (2010) Low-dimensional mott material: transport in ultrathin epitaxial LaNiO\(_3\) films. Appl Phys Lett 96(6):1–4

    Google Scholar 

  3. Scherwitzl R, Gariglio S, Gabay M, Zubko P, Gibert M, Triscone JM (2011) Metal-insulator transition in ultrathin LaNiO\(_3\) films. Phys Rev Lett 106(24):3–6

    Article  Google Scholar 

  4. King PDC, Wei HI, Nie YF, Uchida M, Adamo C, Zhu S, He X, Božović I, Schlom DG, Shen KM (2014) Atomic-scale control of competing electronic phases in ultrathin LaNiO\(_3\). Nat Nanotechnol 9(6):443–447

    Article  ADS  Google Scholar 

  5. Yoo HK, Hyun SI, Chang YJ, Moreschini L, Sohn CH, Kim HD, Bostwick A, Rotenberg E, Shim JH, Noh TW (2016) Thickness-dependent electronic structure in ultrathin LaNiO\(_3\) films under tensile strain. Phys Rev B 93(3):1–7

    Google Scholar 

  6. Fowlie J, Gibert M, Tieri G, Gloter A, Íñiguez J, Filippetti A, Catalano S, Gariglio S, Schober A, Guennou M, Kreisel J, Stéphan O, Triscone JM (2017) Conductivity and local structure of LaNiO\(_3\) thin films. Adv Mater 29(18):1–5

    Google Scholar 

  7. Coleman P (2016) Introduction to many-body physics. Cambridge University Press

    Google Scholar 

  8. Kumah DP, Disa AS, Ngai JH, Chen H, Malashevich A, Reiner JW, Ismail-Beigi S, Walker FJ, Ahn CH (2014) Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv Mater 26(12):1935–1940

    Article  Google Scholar 

  9. Kumah DP, Malashevich A, Disa AS, Arena DA, Walker FJ, Ismail-Beigi S, Ahn CH (2014) Effect of surface termination on the electronic properties of LaNiO\(_3\) films. Phys Rev Appl 2(5):1–7

    Article  Google Scholar 

  10. Hepting M, Kukuruznyak D, Benckiser E, Le Tacon M, Keimer B (2015) Raman light scattering on ultra-thin films of LaNiO\(_3\) under compressive strain. Phys B Condens Matter 460:196–198

    Article  ADS  Google Scholar 

  11. Schober A, Guennou M, Weber MC, Zhao H, Íñiguez J, Fowlie J, Gibert M, Catalano S, Triscone JM, Kreisel J (2018) Octahedra soft modes in ultrathin perovskite films. Unpublished

    Google Scholar 

  12. Gou G, Grinberg I, Rappe AM, Rondinelli JM (2011) Lattice normal modes and electronic properties of the correlated metal LaNiO\(_3\). Phys Rev B Condens Matter Mater Phys 84(14):1–13

    Google Scholar 

  13. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54(16):11169–11186

    Google Scholar 

  14. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175(1):67–71

    Google Scholar 

  15. Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S, Niranjan MK, Burton JD, Tsymbal EY, Chu YH, Yu P, Ramesh R, Kalinin SV, Pennycook SJ (2010) Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys Rev Lett 105(8):1–4

    Article  Google Scholar 

  16. Aso R, Kan D, Shimakawa Y, Kurata H (2013) Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci Rep 3:1–6

    Google Scholar 

  17. Moon EJ, Balachandran PV, Kirby BJ, Keavney DJ, Sichel-Tissot RJ, Schlepütz CM, Karapetrova E, Cheng XM, Rondinelli JM, May SJ (2014) Effect of interfacial octahedral behavior in ultrathin manganite films. Nano Lett 14(5)

    Google Scholar 

  18. Vailionis A, Boschker H, Liao Z, Smit JRA, Rijnders G, Huijben M, Koster G (2014) Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces. Appl Phys Lett 105(13):0–5

    Google Scholar 

  19. Barman SR, Chainani A, Sarma DD (1994) Covalency-driven unusual metal-insulator transition in nickelates. Phys Rev B 49(12):8475–8478

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Fowlie .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fowlie, J. (2019). Ultrathin LaNiO\(_{3}\). In: Electronic and Structural Properties of LaNiO₃-Based Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-15238-3_6

Download citation

Publish with us

Policies and ethics