Skip to main content

Introduction to the Nickelates

  • Chapter
  • First Online:
  • 777 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nickelates are one of the central families of the transition metal oxides, serving as a canonical example of the rich physics of TMOs. As perovskites, their chemical formula is RNiO\(_3\) where the R represents a rare earth cation, mostly from the lanthanide series, lanthanum to lutetium, with only cerium, praseodymium and terbium unable to be substituted onto the A-site, probably due to their preferential oxidation state of 4+. As the R substitution progresses along the rare earths, the ionic radius decreases, which enhances the distortion of the lattice structure, bringing the Ni–O–Ni bond angle away from \(180^{\circ }\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Torrance JB, Lacorre P, Nazzal AI, Ansaldo EJ, Niedermayer Ch (1992) Systematic study of insulator-metal transitions in perovskites RNiO\(_3\) (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys Rev B 45(14):8209–8212

    Google Scholar 

  2. Medarde M (1997) Structural, magnetic and electronic properties of RNiO\(_3\) perovskites (R = rare earth). J Phys Condens Matter 9:1679–1707

    Google Scholar 

  3. Catalan G (2008) Progress in perovskite nickelate research. Phase Transit 81(7–8):729–749

    Article  Google Scholar 

  4. Guo H, Li ZW, Zhao L, Hu Z, Chang CF, Kuo CY, Schmidt W, Piovano A, Pi TW, Sobolev O, Khomskii DI, Tjeng LH, Komarek AC (2018) Antiferromagnetic correlations in the metallic strongly correlated transition metal oxide LaNiO\(_3\). Nat Commun 9(1)

    Google Scholar 

  5. Mizokawa T, Khomskii DI, Sawatzky GA (2000) Spin and charge ordering in self-doped Mott insulators. Phys Rev B 61(17):4

    Google Scholar 

  6. Bisogni V, Catalano S, Green RJ, Gibert M, Scherwitzl R, Huang Y, Strocov VN, Zubko P, Balandeh S, Triscone JM, Sawatzky G, Schmitt T (2016) Ground-state oxygen holes and the metal-insulator transition in the negative charge-transfer rare-earth nickelates. Nat Commun 7:1–8

    Google Scholar 

  7. Chaloupka J, Khaliullin G (2008) Orbital order and possible superconductivity in LaNiO\(_3\)/LaMO\(_3\) superlattices. Phys Rev Lett 100(1):3–6

    Article  Google Scholar 

  8. Mazin II, Khomskii DI, Lengsdorf R, Alonso JA, Marshall WG, Ibberson RM, Podlesnyak A, Martínez-Lope MJ, Abd-Elmeguid MM (2007) Charge ordering as alternative to Jahn-Teller distortion. Phys Rev Lett 98(17):1–4

    Article  Google Scholar 

  9. Hyowon P, Millis AJ, Marianetti CA (2012) Site-selective Mott transition in rare-earth-element nickelates. Phys Rev Lett 109(15):1–5

    Google Scholar 

  10. Johnston S, Mukherjee A, Elfimov I, Berciu M, Sawatzky GA (2014) Charge disproportionation without charge transfer in the rare-earth-element nickelates as a possible mechanism for the metal-insulator transition. Phys Rev Lett 112(10)

    Google Scholar 

  11. Subedi A, Peil OE, Georges A (2015) Low-energy description of the metal-insulator transition in the rare-earth nickelates. Phys Rev B - Condens Matter Mater Phys 91(7):1–16

    Google Scholar 

  12. Varignon J, Grisolia MN, Íñiguez J, Barthélémy A, Bibes M (2017) Reconciling the ionic and covalent pictures in rare-earth nickelates. npj Quantum Mater 2:21:1–8

    Google Scholar 

  13. Green RJ, Haverkort MW, Sawatzky GA (2016) Bond disproportionation and dynamical charge fluctuations in the perovskite rare-earth nickelates. Phys Rev B 94(19):1–5

    Article  Google Scholar 

  14. Mercy A, Bieder J, Íñiguez J, Ghosez P (2017) Structurally triggered metal-insulator transition in rare-earth nickelates. Nat Commun 8(1):1–6

    Google Scholar 

  15. Ruppen J, Teyssier J, Ardizzone I, Peil OE, Catalano S, Gibert M, Triscone JM, Georges A, Van Der Marel D (2017) Impact of antiferromagnetism on the optical properties of rare-earth nickelates. Phys Rev B 96(4):1–5

    Article  Google Scholar 

  16. Staub U, Meijer GI, Fauth F, Allenspach R, Bednorz JG, Karpinski J, Kazakov SM, Paolasini L, D’Acapito F (2002) Direct observation of charge order in an epitaxial NdNiO\(_3\) film. Phys Rev Lett 88(12):4

    Article  Google Scholar 

  17. Obradors X, Paulius LM, Maple MB, Torrance JB, Nazzal AI, Fontcuberta J, Granados X (1993) Pressure dependence of the metal-insulator transition in the charge-transfer oxides RNiO\(_3\) (R = Pr, Nd, Nd\(_{0.7}\)La\(_{0.3}\)). Phys Rev B 47(18):12353–12356

    Google Scholar 

  18. Caviglia AD, Scherwitzl R, Popovich P, Hu W, Bromberger H, Singla R, Mitrano M, Hoffmann MC, Kaiser S, Zubko P, Gariglio S, Triscone JM, Först M, Cavalleri A (2012) Ultrafast strain engineering in complex oxide heterostructures. Phys Rev Lett 108(13)

    Google Scholar 

  19. Medarde M, Lacorre P, Conder K, Fauth F, Furrer A (1998) Giant \(^{16}\)O-\(^{18}\)O Isotope effect on the metal-insulator transition of RNiO\(_{3}\) Perovskites (R = Rare Earth). Phys Rev Lett 80:2397–2400

    Article  ADS  Google Scholar 

  20. Tiwari A, Jin C, Narayan J (2002) Strain-induced tuning of metal-insulator transition in NdNiO\(_3\). Appl Phys Lett 80(21):4039–4041

    Google Scholar 

  21. Liu J, Kareev M, Gray B, Kim JW, Ryan P, Dabrowski B, Freeland JW, Chakhalian J (2010) Strain-mediated metal-insulator transition in epitaxial ultrathin films of NdNiO\(_3\). Appl Phys Lett 96(23):1–4

    Google Scholar 

  22. Catalano S, Gibert M, Bisogni V, Peil OE, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Georges A, Sawatzky GA, Schmitt T, Triscone JM (2014) Electronic transitions in strained SmNiO\(_3\) thin films. APL Mater 2(11):2–9

    Article  Google Scholar 

  23. Hauser AJ, Mikheev E, Moreno NE, Hwang J, Zhang JY, Stemmer S (2015) Correlation between stoichiometry, strain, and metal-insulator transitions of NdNiO\(_3\) films. Appl Phys Lett 106(9)

    Google Scholar 

  24. Catalano S, Gibert M, Bisogni V, He F, Sutarto R, Viret M, Zubko P, Scherwitzl R, Sawatzky GA, Schmitt T, Triscone J-M (2015) Tailoring the electronic transitions of NdNiO\(_3\) films through (111)\(_{pc}\) oriented interfaces. APL Mater 3(6):062506

    Article  ADS  Google Scholar 

  25. García-Muñoz JL, Rodríguez-Carvajal J, Lacorre P (1992) Sudden appearance of an unusual spin density wave at the metal-insulator transition in the perovskites RNiO\(_3\) (R = Pr, Nd). Europhys Lett 20(3):241–247

    Article  ADS  Google Scholar 

  26. Scagnoli V, Staub U, Mulders AM, Janousch M, Meijer GI, Hammerl G, Tonnerre JM, Stojic N (2006) Role of magnetic and orbital ordering at the metal-insulator transition in NdNiO\(_3\). Phys Rev B - Condens Matter Mater Phys 73(10):1–4

    Google Scholar 

  27. Catalano S, Gibert M, Fowlie J, J Íñiguez, Triscone J-M (2018) Rare-earth nickelates RNiO\(_3\): thin films and heterostructures. Rep Prog Phys

    Google Scholar 

  28. Zhang J, Zheng H, Ren Y, Mitchell JF (2017) High-pressure floating-zone growth of Perovskite Nickelate LaNiO\(_3\) single crystals. Cryst Growth Des 17(5):2730–2735

    Google Scholar 

  29. Zhang ST, Zhang XJ, Cheng HW, Chen YF, Liu ZG, Ming NB, Hu XB, Wang JY (2003) Enhanced electrical properties of c-axis epitaxial Nd-substituted Bi\(_4\)Ti\(_3\)O\(_{12}\) thin films. Appl Phys Lett 83(21):4378–4380

    Google Scholar 

  30. Kim K, Paranthaman M, Norton DP, Aytug T, Cantoni C, Gapud AA, Goyal A, Christen DK (2006) A perspective on conducting oxide buffers for Cu-based YBCO-coated conductors. Supercond Sci Technol 19(4)

    Google Scholar 

  31. Bruno FY, Boyn S, Fusil S, Girod S, Carrétéro C, Marinova M, Gloter A, Xavier S, Deranlot C, Bibes M, Barthélémy A, Garcia V (2016) Millionfold resistance change in ferroelectric tunnel junctions based on Nickelate electrodes. Adv Electron Mater 2(3):1500245

    Google Scholar 

  32. Zhang J, Zhao Y, Zhao X, Liu Z, Chen W (2014) Porous perovskite LaNiO\(_3\) nanocubes as cathode catalysts for Li-O\(_2\) batteries with low charge potential. Sci Rep 4:2–7

    Google Scholar 

  33. Hou F, Qin Y, Xu T, Xu M (2002) Study on oxygen-sensing properties of LaNiO\(_3\) thin films. J Electroceram 243–247

    Google Scholar 

  34. Wang B-X, Rosenkranz S, Rui X, Zhang J, Ye F, Zheng H, Klie RF, Mitchell JF, Phelan D (2018) Antiferromagnetic defect structure in LaNiO\(_{3-\delta }\) single crystals. Phys Rev Mater 2(6):064404

    Google Scholar 

  35. Dong S, Dagotto E (2013) Quantum confinement induced magnetism in LaNiO\(_3\)-LaMnO\(_3\) superlattices. Phys Rev B - Condens Matter Mater Phys 87(19):1–7

    Google Scholar 

  36. Hoffman J, Tung IC, Nelson-Cheeseman BB, Liu M, Freeland JW, Bhattacharya A (2013) Charge transfer and interfacial magnetism in (LaNiO\(_3\))\(_n\)/(LaMnO\(_3\))\(_2\) superlattices. Phys Rev B 88(14):144411

    Article  ADS  Google Scholar 

  37. Hoffman JD, Kirby BJ, Kwon J, Fabbris G, Meyers D, Freeland JW, Martin I, Heinonen OG, Steadman P, Zhou H, Schlepütz CM, Dean MPM, te Velthuis SGE, Zuo JM, Bhattacharya A (2016) Oscillatory noncollinear magnetism induced by interfacial charge transfer in superlattices composed of metallic oxides. Phys Rev X 6(4):1–9

    Google Scholar 

  38. Boris AV, Matiks Y, Benckiser E, Frano A, Popovich P, Hinkov V, Wochner P, Detemple E, Malik VK, Bernhard C, Prokscha T, Suter A, Salman Z, Morenzoni E, Cristiani G, Habermeier H, Keimer B (2011) Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science (80-.) 332:937–941

    Google Scholar 

  39. Frano A, Schierle E, Haverkort MW, Lu Y, Wu M, Blanco-Canosa S, Nwankwo U, Boris AV, Wochner P, Cristiani G, Habermeier HU, Logvenov G, Hinkov V, Benckiser E, Weschke E, Keimer B (2013) Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys Rev Lett 111(10):3–7

    Article  Google Scholar 

  40. Gibert M, Viret M, Zubko P, Jaouen N, Tonnerre JM, Torres-Pardo A, Catalano S, Gloter A, Stephan O, Triscone JM (2016) Interlayer coupling through a dimensionality-induced magnetic state. Nat Commun 7:11227

    Article  ADS  Google Scholar 

  41. Bednorz JG, Müller KA (1986) Possible high T c superconductivity in the Ba—La—Cu—O system. Zeitschrift für Phys B Condens Matter 193:267–271

    Google Scholar 

  42. Hansmann P, Yang X, Toschi A, Khaliullin G, Andersen OK, Held K (2009) Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys Rev Lett 103(1):1–4

    Google Scholar 

  43. Hansmann P, Toschi A, Yang X, Andersen OK, Held K (2010) Electronic structure of nickelates: from two-dimensional heterostructures to three-dimensional bulk materials. Phys Rev B - Condens Matter Mater Phys 82(23):10–17

    Google Scholar 

  44. Benckiser E, Haverkort MW, Brück S, Goering E, MacKe S, Frañ A, Yang X, Andersen OK, Cristiani G, Habermeier HU, Boris AV, Zegkinoglou I, Wochner P, Kim HJ, Hinkov V, Keimer B (2011) Orbital reflectometry of oxide heterostructures. Nat Mater 10(3):189–193

    Google Scholar 

  45. Wu M, Benckiser E, Haverkort MW, Frano A, Lu Y, Nwankwo U, Brück S, Audehm P, Goering E, Macke S, Hinkov V, Wochner P, Christiani G, Heinze S, Logvenov G, Habermeier HU, Keimer B (2013) Strain and composition dependence of orbital polarization in nickel oxide superlattices. Phys Rev B - Condens Matter Mater Phys 88(12):1–9

    Google Scholar 

  46. Disa AS, Kumah DP, Malashevich A, Chen H, Arena DA, Specht ED, Ismail-Beigi S, Walker FJ, Ahn CH (2015) Orbital engineering in symmetry-breaking polar heterostructures. Phys Rev Lett 114(2):1–6,

    Google Scholar 

  47. May SJ, Kim JW, Rondinelli JM, Karapetrova E, Spaldin NA, Bhattacharya A, Ryan PJ (2010) Quantifying octahedral rotations in strained perovskite oxide films. Phys Rev B - Condens Matter Mater Phys 82(1):1–7

    Google Scholar 

  48. Chen H, Millis AJ, Marianetti CA (2013) Engineering correlation effects via artificially designed oxide superlattices. Phys Rev Lett 111(11):116403

    Google Scholar 

  49. Chen H, Kumah DP, Disa AS, Walker FJ, Ahn CH, Ismail-Beigi S (2013) Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys Rev Lett 110(18):186402

    Google Scholar 

  50. Han MJ, Wang X, Marianetti CA, Millis AJ (2011) Dynamical mean-field theory of nickelate superlattices. Phys Rev Lett 107(20):1–5

    Google Scholar 

  51. Peil OE, Ferrero M, Georges A (2014) Orbital polarization in strained LaNiO\(_3\): structural distortions and correlation effects. Phys Rev B - Condens Matter Mater Phys 90(4):1–12

    Google Scholar 

  52. Fabbris G, Meyers D, Okamoto J, Pelliciari J, Disa AS, Huang Y, Chen ZY, Wu WB, Chen CT, Ismail-Beigi S, Ahn CH, Walker FJ, Huang DJ, Schmitt T, Dean MPM (2016) Orbital engineering in nickelate heterostructures driven by anisotropic oxygen hybridization rather than orbital energy levels. Phys Rev Lett 117(14):1–6

    Article  Google Scholar 

  53. Middey S, Chakhalian J, Mahadevan P, Freeland JW, Millis AJ, Sarma DD (2016) Physics of ultrathin films and heterostructures of rare earth nickelates. Annu Rev Mater Res 46:305–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Fowlie .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fowlie, J. (2019). Introduction to the Nickelates. In: Electronic and Structural Properties of LaNiO₃-Based Heterostructures. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-15238-3_3

Download citation

Publish with us

Policies and ethics