Skip to main content

Parent Materials and Lattice Characterisation for Metallic Microlattice Structures

  • Chapter
  • First Online:
Metallic Microlattice Structures

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSSTME))

Abstract

The aim of this chapter is to describe the measurement of parent material properties, mostly using micro strut tensile tests, and to discuss the failure modes of microlattice blocks of selected topologies, mostly under compressive loading. A number of microlattice parent materials (SS316L, Ti 64, AlSi10/12Mg), topologies (BCC, BCCZ, OT), lattice block loadings (compression, tension, shear, combined impact) will be discussed. Modes of failure of microstruts will be discussed and specific stiffness and strength properties compared. Both static and impact loading will be discussed. Parent material behaviour includes large plastic strains and material rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D.C. Austin, M.A. Bevan, A.D. East, et al., Microstructural investigation and impact testing of additively-manufactured Ti-6Al-4V in Characterisation of Minerals, Metals and Materials, in The Minerals, Metals and Materials Society, ed. by S. Ikhmayies, et al. (2017)

    Google Scholar 

  • Y. Bao, T. Wierzbicki, A comparative study on various ductile crack formation criteria. J. Eng. Mat. Tech. (ASME) 126, 314–324 (2004)

    Article  Google Scholar 

  • A.D. Brandao, R. Gerard, J. Gumpinger et al., Challenges in additive manufacturing of space parts: powder feedstock cross contamination and its impact on end products. Materials (MDPI) 10, 522 (2017)

    Article  Google Scholar 

  • British Standards (2014): BS EN ISO 17296—3: 2014. Additive manufacturing—general principles. Part 3: Main characteristics and corresponding test methods. British Standards Institution

    Google Scholar 

  • British Standards, BS ISO 13314: 2011. Mechanical testing of metals—ductility testing—compression tests for porous and cellular metals. British Standards Institution. UK (2011)

    Google Scholar 

  • British Standards (2016): ISO 6892-1: Metallic materials—tensile testing—Part 1: method of test at room temperature. British Standards Institution

    Google Scholar 

  • J. Bültmann, S. Merkt, C. Hammer, et al., Scalability of the mechanical properties of selective laser melting produced micro struts. J. Laser Appl. 27(S2) S29206-1–7 (2015)

    Google Scholar 

  • B. Burgan, Elevated temperature and high strain rate properties of offshore steel. Construction Institute. Offshore Technology Report. 2001/20 (2001)

    Google Scholar 

  • H.D. Carlton, A. Haboub, G.F. Gallegos, et al., Damage evolution and failure mechanism in additively-manufactured stainless steel, Mat. Sci. Eng. A651, 406–414 (2016)

    Google Scholar 

  • J.V. Carstensen, R. Lotfi, J.K. Guest, et al., Topology optimisation of cellular materials with maximised energy absorption, in Proceedings of ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, Boston, Mass., USA, 2–5 Aug 2015 (2015)

    Google Scholar 

  • S. Ghouse, S. Babu, K. Nai et al., The influence of laser parameters, scanning strategies and material on the fatigue strength of a stochastic porous structure. Add. Manuf. 22, 290–301 (2018)

    Google Scholar 

  • R. Gümrük, R.A.W. Mines, S. Karadeniz, Static mechanical behaviours of stainless steel microlattice structures under different loading conditions. Mat. Sci. Eng. A586, 392–406 (2013)

    Google Scholar 

  • R. Gümrük, R.A.W. Mines, S. Karadeniz, Determination of strain-rate sensitivity of microstruts manufactured using the selective laser melting method. J. Mat. Eng. Perf. (ASM) 27(3), 1016–1032 (2018)

    Article  Google Scholar 

  • R. Gümrük, R.A.W. Mines, Compressive behaviour of stainless steel microlattice structures. Int. J. Mech. Sci. 68, 125–139 (2013)

    Google Scholar 

  • J.A. Harris, R.E. Winter, G.J. McShane, Impact response of additively manufactured metallic hybrid lattice materials. Int. J. Imp. Eng. 104, 117–191 (2017)

    Article  Google Scholar 

  • R. Hasan, Progressive collapse of titanium alloy microlattice structures manufactured using selective laser melting, Ph.D. Thesis, University of Liverpool, 2013

    Google Scholar 

  • R. Hasan, R. Mines, P. Fox, Characterisation of selectively laser melted Ti-6Al-4V microlattice struts. Procedia Eng. 10, 536–541 (2011)

    Article  Google Scholar 

  • Y.J. Huang, J. Shen, J.F. Sun, Bulk metallic glasses: smaller is softer. Appl. Phys. Lett. 90, 081918-1–3 (2007)

    Google Scholar 

  • Hutchinson JW (2000) Plasticity at the micron scale, Int.J.of Sol. and Struct., 37:225-238

    Google Scholar 

  • G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better. Adv. Mat. 23, 461–476 (2011)

    Article  Google Scholar 

  • G.S. Langdon, G.K. Schleyer, Unusual strain rate sensitive behaviour of AISI 316 L austenitic stainless steel. J. Strain. Anal. 39(1), 71–86 (2004)

    Google Scholar 

  • H. Lavvafi, J.R. Lewandowski, J.J. Lewandowski, Flex bending fatigue testing of wires, foils and ribbons, Mat. Sci. Eng. A 601, 123–130 (2014)

    Google Scholar 

  • M. Leary, M. Mazur, J. Elambasseril et al., Selective laser melting (SLM) of AlSi12 Mg lattice structures. Mat. Des. 98, 344–357 (2016)

    Google Scholar 

  • L. Liu, Q. Ding, Y. Zhong et al., Dislocation network in additive manufactured steel breaks strength ductility trade off. Mat. Today 21(4), 354–361 (2018)

    Article  Google Scholar 

  • Lloyds Register/TWI, Guidance notes for certification of metallic parts made by additive manufacturing, March 2017. LR/TWI, London (2017)

    Google Scholar 

  • Z. Luo, Y. Zhao, A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Add. Manuf. 21, 318–332 (2018)

    Google Scholar 

  • P. Mercelis, J.P. Kruth, Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 12(5), 254–265 (2006)

    Article  Google Scholar 

  • R.A.W. Mines, S. Tsopanos, Y. Shen et al., Drop weight impact behaviour of sandwich panels with metallic microlattices cores. Int. J. Imp. Eng. 60, 120–132 (2013)

    Article  Google Scholar 

  • Z. Ozdemir, E. Hernandez Nava, A. Tyas et al., Energy absorption in lattice structures in dynamics: experiments. Int. J. Imp. Eng. 89, 49–61 (2016)

    Article  Google Scholar 

  • S. Pauly, L. Lober, R. Petters et al., Processing metallic glasses by selective laser melting. Mat. Today 16(1/2), 37–41 (2013)

    Article  Google Scholar 

  • M. Seifi, A. Salem, J. Beuth et al., Overview of materials qualification needs for metal additive manufacturing. J. Mat. 68(3), 747–764 (2016)

    Google Scholar 

  • Y. Shen, High performance sandwich structures based on novel metal cores, Ph.D. Thesis, University of Liverpool, 2009

    Google Scholar 

  • Y. Shen, S. McKown, S. Tsopanos et al., The mechanical properties of sandwich structures based on metal lattice architectures. J. Sand. Struct. Mat. 12, 159–180 (2010)

    Article  Google Scholar 

  • D. Tancogne-Dejean, A.B. Spierings, D. Mohr, Additively manufactured metallic microlattice materials for high specific energy absorption under static and dynamic loading. Acta. Mater. 116, 14–28 (2016)

    Article  Google Scholar 

  • S. Tsopanos, R.A.W. Mines, S. McKown, et al., The influence of processing parameters on the mechanical properties of selective laser melted stainless steel microlattice structures. J. Manuf. Sci. Eng. 132, 041011-1–12

    Google Scholar 

  • I. Ullah, J. Elambasseril, M. Brandt et al., Performance of bio inspired Kagome truss core structures under compression and shear loading. Comp. Struct. 118, 294–302 (2014)

    Article  Google Scholar 

  • B. Van Hooreweder, Y. Apers, K. Lietaert et al., Improving the fatigue performance of porous metallic bio materials produced by selective laser melting. Acta Biomater. 47, 193–202 (2017)

    Article  Google Scholar 

  • X. Wang, J.A. Muniz Lerma, O. Sanchez Mata et al., Microstructure and mechanical properties of stainless steel 316L vertical struts manufactured by laser powder bed fusion process. Mat. Sci. Eng. A 736, 27–40 (2018)

    Article  Google Scholar 

  • Z. Wang, P. Li, Characterisation and constitutive model of tensile properties of selective laser melted Ti6Al4V struts for microlattice structures. Mat. Sci. Eng. A 725, 350–358 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mines .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mines, R. (2019). Parent Materials and Lattice Characterisation for Metallic Microlattice Structures. In: Metallic Microlattice Structures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-15232-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15232-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15231-4

  • Online ISBN: 978-3-030-15232-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics