Skip to main content

Tapping the Potential of Metabolomics in New Natural Products Discovery from Bacillus Species

  • Chapter
  • First Online:

Abstract

The genus Bacillus has been a source of bioactive metabolites that could be used as lead compounds for drug discovery. However, natural product isolation demands too much time, resource, larger material, and efficient strategies of dereplication. In tackling these challenges, metabolomics can be used as a tool that facilitates the process of metabolites isolation and dereplication. As an emerging technology, metabolomics has a great and largely untapped potential in the fields of natural product discovery. Using metabolomics technologies, hundreds and thousands of metabolites can be identified and characterized in small biological or environmental samples. Summary of recent bioactive metabolites isolated from bacilli together with metabolomics techniques and its potential application in microbial natural products discovery is summarized in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K et al (2012) KNApSAcK family databases: integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1. https://doi.org/10.1093/pcp/pcr165

    Article  CAS  PubMed  Google Scholar 

  • Anjum K, Bi H, Chai W, Lian XY, Zhang Z (2018) Antiglioma pseurotin A from marine Bacillus sp. FS8D regulating tumour metabolic enzymes. Nat Prod Res 32(11):1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Arora D, Chashoo G, Singamaneni V, Sharma N, Gupta P, Jaglan S (2018) Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris. J Appl Microbiol 124(3):730–739

    Article  CAS  PubMed  Google Scholar 

  • Bakiri A, Hubert J, Reynaud R, Lanthony S, Harakat D, Renault JH, Nuzillard JM (2017) Computer-aided 13C NMR chemical profiling of crude natural extracts without fractionation. J Nat Prod 80(5):1387–1396

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Erehman J, Gohlke BO, Wilhelm T, Preissner R, Dunkel M (2015) Super natural II – a database of natural products. Nucleic Acids Res 43:D935–D939. https://doi.org/10.1093/nar/gku886

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2014) Polyketide family of novel antibacterial 7-O-Methyl-5′-hydroxy-3′-heptenoate-macrolactin from seaweed-associated Bacillus subtilis MTCC 10403. J Agric Food Chem 62(50):12194–12208

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Chakraborty RD, Raola VK, Joy M (2017a) O-heterocyclic derivatives with antibacterial properties from marine bacterium Bacillus subtilis associated with seaweed, Sargassum myriocystum. Appl Microbiol Biotechnol 101(2):569–583

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2017b) Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. Phytochemistry 142:112–125

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK, Joy M (2017c) Antibacterial polyketides from Bacillus amyloliquefaciens associated with edible red seaweed Laurenciae papillosa. Food Chem 218:427–434

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2018) Previously undescribed antibacterial polyketides from heterotrophic Bacillus amyloliquefaciens associated with seaweed padina gymnospora. Appl Biochem Biotechnol 184(2):716–732

    Article  CAS  PubMed  Google Scholar 

  • Cui P, Guo W, Chen X (2017) Isotryptophan from Antarctic Bacillus amyloliquefaciens Pc3: purification, identification, characterization, and antifungal activity. Nat Prod Res 31(18):2153–2157

    Article  CAS  PubMed  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18(11):1157

    Article  CAS  PubMed  Google Scholar 

  • Fu P, Johnson M, Chen H, Posner BA, MacMillan JB (2014) Carpatamides A–C, cytotoxic arylamine derivatives from a marine-derived Streptomyces sp. J Nat Prod 77(5):1245–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomaa EZ (2012) Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. J Microbiol 50(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Gui Y, Chen L, Yuan G, Lu H-Z, Xu X (2013) Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE 8:e62839. https://doi.org/10.1371/journal.pone.0062839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14:1437–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidarzadeh N, Baghaee-Ravari S (2015) Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Plant Protect 48(13–16):841–849

    Article  CAS  Google Scholar 

  • Hou Y, Braun DR, Michel CR, Klassen JL, Adnani N, Wyche TP, Bugni TS (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84(10):4277–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T, Yang D, Rudolf JD, Xie P, Xie G, Teng Q, Lohman JR, Zhu X, Huang Y, Zhao LX, Jiang Y (2014) Strain prioritization for natural product discovery by a high-throughput real-time PCR method. J Nat Prod 77(10):2296–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaruchoktaweechai C, Suwanborirux K, Tanasupawatt S, Kittakoop P, Menasveta P (2000) New macrolactins from a marine Bacillus sp. Sc026. J Nat Prod 63(7):984–986

    Article  CAS  PubMed  Google Scholar 

  • Jin P, Wang H, Liu W, Fan Y, Miao W (2018) A new cyclic lipopeptide isolated from Bacillus amyloliquefaciens HAB-2 and safety evaluation. Pestic Biochem Physiol 147:40–45

    Article  CAS  PubMed  Google Scholar 

  • Kamdem RS, Wang H, Wafo P, Ebrahim W, Özkaya FC, Makhloufi G et al (2018) Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 124:132–136

    Article  CAS  PubMed  Google Scholar 

  • Koehn FE (2008) High impact technologies for natural products screening. In: Natural compounds as drugs, vol I. Birkhäuser Verlag, Basel, pp 175–210

    Chapter  Google Scholar 

  • Kontnik R, Bosak T, Butcher RA, Brocks JJ, Losick R, Clardy J, Pearson A (2008) Sporulenes, heptaprenyl metabolites from Bacillus subtilis spores. Org Lett 10(16):3551–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug D, Müller R (2014) Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat Prod Rep 31(6):768–783

    Article  CAS  PubMed  Google Scholar 

  • Kurita KL, Glassey E, Linington RG (2015) Proc Natl Acad Sci 112(39):11999–12004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Carr G, Zhang Y, Williams DE, Amlani A, Bottriell H, Mui AL, Andersen RJ (2011) Turnagainolides A and B, cyclic depsipeptides produced in culture by a Bacillus sp.: isolation, structure elucidation, and synthesis. J Nat Prod 74(5):1093–1099

    Article  CAS  PubMed  Google Scholar 

  • López-Pérez JL, Theron R, del Olmo E, Diaz D (2007) NAPROC-13: a database for the dereplication of natural product mixtures in bioassay-guided protocols. Bioinformatics 23:3256–3257

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Hu J (2018) Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato. 3 Biotech 8(2):125

    Article  PubMed  PubMed Central  Google Scholar 

  • Macintyre L, Zhang T, Viegelmann C, Martinez IJ, Cheng C, Dowdells C et al (2014) Metabolomic tools for secondary metabolite discovery from marine microbial symbionts. Mar Drugs 12(6):3416–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Zhong Z, Qian PY (2018) Paenialvin A-D, four peptide antibiotics produced by PaeniBacillus alvei DSM 29. J Antibiot 71:769–777

    Article  CAS  Google Scholar 

  • Mondol MAM, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs 11(8):2846–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad SA, Ahmed S (2015) Production and characterization of a new antibacterial peptide obtained from AeriBacillus pallidus SAT4. Biotechnol Rep 8:72–80

    Article  Google Scholar 

  • O’Connell TM (2012) Recent advances in metabolomics in oncology. Bioanalysis 4(4):431–451

    Article  CAS  PubMed  Google Scholar 

  • Patel PS, HuANG S, Fisher S, Pirnik D, Aklonis C, Dean L, Meyers E, Fernandes P, Mayerl F (1995) Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis. J Antibiot 48(9):997–1003

    Article  CAS  Google Scholar 

  • Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, Zotchev SB, Rückert C, Braig S, Zahler S, Kalinowski J (2017) New natural products identified by combined genomics-metabolomics profiling of marine streptomyces sp. MP131-18. Sci Rep 7:42382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinzón-Espinosa A, Martinez-Matamoros D, Castellanos L, Duque C, Rodríguez J, Jiménez C, Ramos FA (2017) Cereusitin A, a cyclic tetrapeptide from a Bacillus cereus strain isolated from the soft coral Antillogorgia (syn. Pseudopterogorgia) elisabethae. Tetrahedron Lett 58(7):634–637

    Article  CAS  Google Scholar 

  • Ravu RR, Jacob MR, Chen X, Wang M, Nasrin S, Kloepper JW, Liles MR, Mead DA, Khan IA, Li XC (2015) Bacillusin A, an antibacterial macrodiolide from Bacillus amyloliquefaciens AP183. J Nat Prod 78(4):924–928

    Article  CAS  PubMed  Google Scholar 

  • Rochfort S (2005) Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod 68(12):1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Sansinenea E, Ortiz A (2011) Secondary metabolites of soil Bacillus spp. Biotechnol Lett 33(8):1523–1538

    Article  CAS  PubMed  Google Scholar 

  • Shahzad R, Latif Khan A, Ali L, Bilal S, Imran M, Choi KS, Al-Harrasi A, Al-Harrasi A, Lee IJ (2018) Characterization of new bioactive enzyme inhibitors from endophytic Bacillus amyloliquefaciens RWL-1. Molecules 23(1):114

    Article  CAS  PubMed Central  Google Scholar 

  • Sidebottom AM, Johnson AR, Karty JA, Trader DJ, Carlson EE (2013) Integrated metabolomics approach facilitates discovery of an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem Biol 8(9):2009–2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son S, Ko SK, Jang M, Kim JW, Kim GS, Lee JK, Jeon ES, Futamura Y, Ryoo I-J, Lee J-S, Oh H, Hong Y-S, Kim BY, Takahashi S, Osada H, Jang JH, Oh H (2016) New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006. Mar Drugs 14(4):72

    Article  CAS  PubMed Central  Google Scholar 

  • Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K (2002) Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother 46(2):315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tareq FS, Shin HJ (2017) Bacilotetrins A and B, Anti-Staphylococcal Cyclic-Lipotetrapeptides from a marine-derived Bacillus subtilis. J Nat Prod 80(11):2889–2892

    Article  CAS  PubMed  Google Scholar 

  • Tareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, Islam MT, Shin HJ (2014a) Gageotetrins A–C, noncytotoxic antimicrobial linear lipopeptides from a marine bacterium Bacillus subtilis. Org Lett 16(3):928–931

    Article  CAS  PubMed  Google Scholar 

  • Tareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, Islam MT, Shin HJ (2014b) Non-cytotoxic antifungal agents: isolation and structures of gageopeptides A–D from a Bacillus strain 109GGC020. J Agric Food Chem 62(24):5565–5572

    Article  CAS  PubMed  Google Scholar 

  • Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz Peralta S, Romero-Tabarez M (2013) Fengycin C produced by Bacillus subtilis EA-CB0015. J Nat Prod 76(4):503–509

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Du C, Gubbens J, Choi YH, van Wezel GP (2015) Metabolomics-driven discovery of a prenylated isatin antibiotic produced by streptomyces species MBT28. J Nat Prod 78(10):2355–2363

    Article  CAS  PubMed  Google Scholar 

  • Xie CL, Xia JM, Su RQ, Li J, Liu Y, Yang XW, Yang Q (2018) Bacilsubteramide A, a new indole alkaloid, from the deep-sea-derived Bacillus subterraneus 11593. Nat Prod Res:1–5

    Google Scholar 

  • Yang J, Liang Q, Wang M, Jeffries C, Smithson D, Tu Y, Boulos N, Jacob MR, Shelat AA, Wu Y, Ravu RR (2014) UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small-molecule natural product libraries. J Nat Prod 77(4):902–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Zhu X, Cao M, Wang C, Zhang C, Lu Z, Lu F (2016) Genomics-inspired discovery of three antibacterial active metabolites, aurantinins B, C, and D from compost-associated Bacillus subtilis fmb60. J Agric Food Chem 64(46):8811–8820

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Liu F, Yang X, Jin J, Dong X, Zeng KW, Liu D, Zhang Y, Ma M et al (2018) Bacillibactin and bacillomycin analogues with cytotoxicities against human cancer cell lines from marine Bacillus sp. PKU-MA00093 and PKU-MA00092. Mar Drugs 16(1):22

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Bangladesh Academy of Sciences for funding this work under the BAS-USDA project to MTI. They are also thankful to the RMC of BSMRAU, University Grants Commission of Bangladesh, and Ministry of Science and Technology of Bangladesh for partial funding to this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dame, Z.T., Islam, M.T. (2019). Tapping the Potential of Metabolomics in New Natural Products Discovery from Bacillus Species. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_11

Download citation

Publish with us

Policies and ethics