Skip to main content

Genomics and Post-genomics Approaches for Elucidating Molecular Mechanisms of Plant Growth-Promoting Bacilli

  • Chapter
  • First Online:

Abstract

Bioactive natural products (hormones, antibiotics, etc.) produced by Bacillus spp. play a major role in the promotion of plant growth and enhancement of tolerance to various stresses. The development of genome sequencing and the high-throughput bioinformatics tools has remarkably contributed to our understanding of the complex molecular mechanisms controlling the expression of biosynthetic gene clusters associated with mechanisms of plant growth promotion and stress tolerance. This chapter reviews the recent progress in use and integration of genomics, proteomics, transcriptomics, and metabolomics as emerging strategies to shed light on underlying molecular mechanisms of growth promotion and enhancement of stress tolerance in plants by various plant probiotic and free-living soil Bacilli.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi MW, Marium T, Khan MQ, Zaki MJ (2017) Assessment of extracellular metabolites from Bacillus species against root-knot nematodes and root-infecting fungi in Abelmoschus esculentus (L.) Moench. Pak J Bot 49(S1):289–294

    CAS  Google Scholar 

  • Abdelmohsen UR, Grkovic T, Balasubramanian S, Kamel MS, Quinn RJ, Hentschel U (2015) Elicitation of secondary metabolism in actinomycetes. Biotechnol Adv 33:798–811

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman M, Abdel-Motaal F, El-Sayed M, Jogaiah S, Shigyo M et al (2016) Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Sci 246:128–138. https://doi.org/10.1016/j.plantsci.2016.02.008. PMID: 26993243

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitscha A (2014) Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res 21:11054–11065

    Article  CAS  Google Scholar 

  • Ahmad Z, Wu J, Chen L, Dong W (2017) Isolated Bacillus subtilis strain330-2 and its antagonistic genes identified by the removing PCR. Sci Rep 7:1777. https://doi.org/10.1038/s41598-017-01940-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant-growth promoting bacterial endophytes that contain ACC-deaminase. Plant Physiol Biochem 80:160–167

    Article  CAS  PubMed  Google Scholar 

  • Aliferis KA, Chrysayi-Tokoubalides M (2011) Metabolomics in pesticide research and development: review and future perspectives. Metabolomics 7:35–53

    Article  CAS  Google Scholar 

  • Altenbuchner J (2016) Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system. Appl Environ Microbiol 82(17):5421–5427. https://doi.org/10.1128/AEM.01453-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150. https://doi.org/10.1016/j.jksus.2010.06.022

    Article  Google Scholar 

  • Ambreetha S, Chinnadurai C, Marimuthu P, Balachandar D (2018) Plant-associated bacillus modulates the expression of auxin-responsive genes of rice and modifies the root architecture. Rhizosphere 5:57–66. https://doi.org/10.1016/j.rhisph.2017.12.001

    Article  Google Scholar 

  • Annapurna K, Govindasamy V, Sharma M, Ghosh A, Chikara SK (2018) Whole genome shotgun sequence of Bacillus paralicheniformis strain KMS 80, a rhizobacterial endophyte isolated from rice (Oryza sativa L.). 3 Biotech 8:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Anuradha SN (2010) Structural and molecular characteristics of lichenysin and its relationship with surface activity. In: Biosurfactants, pp 304–315

    Google Scholar 

  • Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol 108:386–395. https://doi.org/10.1111/j.1365-2672.2009.04438.x. PMID:19674188

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162

    CAS  Google Scholar 

  • Babu AN, Jogaiah S, Ito S, Nagaraj AK, Tran LSP (2015) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci 231:62–73. https://doi.org/10.1016/j.plantsci.2014.11.006. PMID: 25575992

    Article  CAS  Google Scholar 

  • Belbahri L, Bouket AC, Rkik I, Alenezi FN, Vallat A, Luptakova L, Petrovova E, Oszako T, Cherrad S, Vacher S, Rateb ME (2017) Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Front Microbiol 8:1438. https://doi.org/10.3389/fmicb.2017.01438

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K et al (2018) Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep 8:6502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blacutt AA, Mitchell TR, Bacon CW, Gold SE (2016) Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes during antagonism against Fusarium verticillioides. Mol Plant-Microbe Interac 29(9):713–723

    Article  CAS  Google Scholar 

  • Blin K, Medema MH, Kottmann R, Lee SY, Weber T (2017) The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 45:D555–D559

    Article  CAS  PubMed  Google Scholar 

  • Borchert N, Dieterich C, Krug K, Schütz W, Jung S, Nordheim A, Sommer RJ, Macek B (2010) Proteogenomics of Pristionchus pacificus reveals distinct proteome structure of nematode models. Genome Res 20:837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98:11621–11626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM, K. M. (2005) Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol Lett 242:127–136. https://doi.org/10.1016/j.femsle.2004.10.048

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Kang X, Xi H, Liu C, Xue Y (2016) Complete genome sequence of the endophytic biocontrol strain Bacillus velezensis CC09. Genome Announc 4:e01048–e01016

    Article  PubMed  PubMed Central  Google Scholar 

  • Cakmakci R, Dönmez MF, Erdoğan A (2007) The effect of plant growth promoting rhizo-bacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish J Agril Forestry 31:189–199

    CAS  Google Scholar 

  • Camacho M, Santamaria C, Temprano F, Rodriguez-Navarro DN, Daza A (2001) Co-inoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris L. Can J Microbiol 47:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Apweiler R (2004) The gene ontology annotation (GOA) database: Sharing knowledge in UniProt with gene ontology. Nucleic Acids Res 32(1):262–266

    Article  CAS  Google Scholar 

  • Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MDC, Sahin N, Smith DL, Kim KE, Peluso P et al (2018) Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 8:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challis GL (2014) Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41:219–232

    Article  CAS  PubMed  Google Scholar 

  • Charnock SJ, Davies GJ (1999) Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 3820:6380–6385

    Article  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I et al (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014. https://doi.org/10.1038/nbt1325

    Article  CAS  PubMed  Google Scholar 

  • Chen X-H, Koumoutsi A, Scholz R, Borriss R (2008) More than anticipated-production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24. https://doi.org/10.1159/000142891. PMID: 18957859

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Tian Z, Luo Y, Cheng Y, Long C (2018) Antagonistic activity and the mechanism of Bacillus amyloliquefaciens dh-4 against citrus green mold. Plant Pathol. https://doi.org/10.1094/PHYTO-01-17-0032-R

  • Chinnaswamy A, Coba de la Peña T, Stoll A, de la Peña Rojo D, Bravo J, Rincon A, Lucas MM, Pueyo JJ (2018) A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Ann Appl Biol 172:295–308. https://doi.org/10.1111/aab.12420

    Article  CAS  Google Scholar 

  • Chu F, Kearns DB, Branda SS, Kolter R, Losick R (2006) Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59:1216–1228

    Article  CAS  PubMed  Google Scholar 

  • Colagiero M, Rosso LC, Ciancio A (2017) Diversity and biocontrol potential of bacterial consortia associated to root-knot nematodes. Biol Control. https://doi.org/10.1016/j.biocontrol.2017.07.010

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39(4):487–512

    Article  PubMed  Google Scholar 

  • De Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Gen Mol Biol 38:401–419

    Article  Google Scholar 

  • Dejong CA, Chen GM, Li H, Johnston CW, Edwards MR, Rees PN, Skinnider MA, Webster AL, Magarvey NA (2016) Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat Chem Biol 12:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R et al (2011) Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193:2070–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desbrosses GG, Kopka J, Udvardi MK (2005) Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137(4):1302–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl A, Roske Y, Ball L, Chowdhury A, Hiller M, Molière N, Kramer R, Stöppler D, Worth CL, Schlegel B, Leidert M, Cremer N, Erdmann N, Lopez D, Stephanowitz H, Krause E, Rossum BJ, Schmieder P, Heinemann U, Turgay K, Kbey U, Oschkinat H (2018) Structural changes of TasA in biofilm formation of Bacillus subtilis. PNAS 115(13):3237–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, Fulton L, Fulton R, Godfrey J, Minx P, Mitreva M, Roeseler W, Tian H, Witte H, Yang SP, Wilson RK, Sommer RJ (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40:1193–1198

    Article  CAS  PubMed  Google Scholar 

  • Djenane Z, Nateche F, Amziane M, Gomis-Cebolla J, El-Aichar F, Khorf H, Ferré J (2017) Assessment of the antimicrobial activity and the entomocidal potential of Bacillus thuringiensis isolates from Algeria. Toxins 9:139

    Article  CAS  PubMed Central  Google Scholar 

  • Dong W, Li S, Lu X, Zhang X, Wang P, Ma P, Guo Q (2014) Regulation of fengycin biosynthase by regulator PhoP in the Bacillus subtilis strain NCD-2. Acta Phytopathol Sin 44:180–187. (in Chinese)

    Google Scholar 

  • Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522. https://doi.org/10.1038/nature17944

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Liu Y, Zhang G, Wang D, Zhou X, Shao J, Shen Q, Zhang R (2018) Synthesis and detoxification of nitric oxide in the plant beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 and its effect on biofilm formation. Biochem Biophys Res Commun 503:784–790

    Article  CAS  PubMed  Google Scholar 

  • Douriet-Gamez NR, Maldonado-Mendoza IE, Ibarra-Laclette E, Blom J, Calderon-Vazquez CL (2018) Genomic analysis of Bacillus sp. strain B25, a biocontrol agent of maize pathogen Fusarium verticillioides. Curr Microbiol 75:247–255. https://doi.org/10.1007/s00284-017-1372-1

    Article  CAS  PubMed  Google Scholar 

  • Driss F, Kallassy Awad M, Zouari N, Jaoua S (2005) Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol 99(4):945–953

    Article  CAS  PubMed  Google Scholar 

  • Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70(4):2161

    Article  CAS  PubMed Central  Google Scholar 

  • Earl AM, Eppinger M, Fricke WF, Rosovitz MJ, Rasko DA, Daugherty S, Ravel J (2012) Whole-genome sequences of Bacillus subtilis and close relatives. J Bacteriol 194(9):2378–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401:169–186. https://doi.org/10.1016/S0076-6879(05)01011-6

    Article  CAS  PubMed  Google Scholar 

  • Edwards R, Dixon DP (2010) Glutathione transferases. Arab B 8:e0131. https://doi.org/10.1199/tab.0131

    Article  Google Scholar 

  • Eggert T, Brockmeier U, Dröge MJ, Quax WJ, Jaeger KE (2003) Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiol Letters 225(2):319–324

    Article  CAS  Google Scholar 

  • El-Hadad ME, Mustafa MI, Selim SM, Mahgoob AEA, El-Tayeb TS, Abdel Aziz NH (2010) In vitro evaluation of some bacterial isolates as biofertilizers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World J Microbiol Biotechnol 26(12):2249–2256

    Article  Google Scholar 

  • Endres JR, Clewell A, Jade KA, Farber T, Hauswirth J, Schauss AG (2009) Safety assessment of a proprietary preparation of a novel probiotic, Bacillus coagulans, as a food ingredient. Food and Chemical Toxicol 47:1231–1238

    Article  CAS  Google Scholar 

  • Engelbrecht G, Horak I, van Rensburg PJJ, Claassens S (2018) Bacillus-based bionematicides: development, modes of action and commercialization. Biocontrol Sci Tech 28(7):629–653. https://doi.org/10.1080/09583157.2018.1469000

    Article  Google Scholar 

  • Eppinger M, Bunk B, Johns MA, Edirisinghe JN, Kutumbaka KK, Koenig SS, Martin M (2011) Genome sequences of the biotechnologically important Bacillus megaterium strains QM-B1551 and DSM319. J Bacteriol 193(16):4199–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fijan S (2014) Microorganisms with claimed probiotic properties: an overview of recent literature. Int J Environ Res Public Health 11:4745–4767

    Article  PubMed  PubMed Central  Google Scholar 

  • Fong JNC, Yildiz FH (2015) Biofilm matrix proteins. Microbiol Spectr 3

    Google Scholar 

  • Fuller R (1991) Probiotics in human medicine. Gut 32:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne-Bourque F, Bertrand A, Claessens A, Aliferis KA, Jabaji S (2016) Alleviation of drought stress and metabolic changes in timothy (Phleumpratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao T, Foulston L, Chai Y, Wang Q, Losick R (2015) Alternative modes of biofilm formation by plant-associated Bacillus cereus. Microbiol Open 4:452–464

    Article  CAS  Google Scholar 

  • Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:605. https://doi.org/10.1038/srep28756

    Article  CAS  Google Scholar 

  • Gold SE, Blacutt AA, Meinersmann RJ, Bacon CW (2014) Whole genome shotgun sequence of Bacillus mojavensis strain RRC101, an endophytic bacterium antagonistic to the mycotoxigenic endophytic fungus Fusarium verticillioides. Genome Announc 2:e01090

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gutierrez L, Zeriouh H, Romero D, Cubero J, deVicente A, Perez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew byactivation of jasmonate-and salicylic acid-dependent defense responses. Microb Biotechnol 6:264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerst MM, Yesil M, Yousef AE (2018) Draft genome sequence of Bacillus velezensis OSY-S3, a producer of potent antimicrobial agents active against bacteria and fungi. Genome Announc 6:e01465–e01417. https://doi.org/10.1128/genomeA.01465-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica:963401

    Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Goa M (2001) Gene Ontology annotation based on Enzyme Commission mapping. Genomics 74:121–128

    Article  CAS  Google Scholar 

  • Gond SK, Torres MS, Bergen MS, Helsel Z, White JF (2015) Induction of salt tolerance and up-regulation of aquaporin genes in tropical corn by rhizobacterium Pantoea agglomerans. Lett Appl Microbiol 60:392–399

    Article  CAS  PubMed  Google Scholar 

  • Gong AD, Li H-P, Yuan Q-S, Song X-H, Yao W, He W-J, Zhang J-B, Liao Y-C (2015) Antagonistic mechanism of Iturin A and Plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS ONE 10(2):e0116871. https://doi.org/10.1371/journal.pone.0116871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindasamy K, Sevugapperumal N, Devi A (2017) A proteomic approach to identify Bacillus subtilis induced defense related proteins in noni challenged with Meloidogyne incognita. Int J Plant Anim Environ Sci:110–116. https://doi.org/10.21276/Ijpaes

  • Griffin JL (2003) Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Curr Opin Chem Biol:7648–7654

    Google Scholar 

  • Hadjithomas M, Chen IA, Chu K, Huang J, Ratner A, Palaniappan K, Andersen E, Markowitz V, Kyrpides NC, Ivanova NN (2017) IMG-ABC: new features for bacterial secondary metabolism analysis and targeted biosynthetic gene cluster discovery in thousands of microbial genomes. Nucleic Acids Res 45:D560–D565

    Article  CAS  PubMed  Google Scholar 

  • Hagemeier J, Schneider B, Oldham NJ, Hahlbrock K (2001) Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Proc Natl Acad Sci 98(2):753–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Han SJ, Yoo YJ, Kang HS (1995) Characterization of a bifunctional cellulase and its structural gene The cell gene of Bacillus sp. D04 has exo-and endoglucanase activity. J Biol Chem 270(43):26012–26019

    Article  CAS  PubMed  Google Scholar 

  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D, Cleland C (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. Bacteriol 188(9):33823390

    Article  Google Scholar 

  • Handtke S, Volland S, Methling K, Albrecht D, Becher D, Nehls J, Bongaerts J, Maurer K-H, Lalk M, Liesegang H, Voigt B, Daniel R, Hecker M (2014) Cell physiology of the biotechnological relevant bacterium Bacilluspumilus—an omics-based approach. J Biotechnol 192:204–214

    Google Scholar 

  • Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Smiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:617. https://doi.org/10.3389/fpls.2018.00617

    Article  PubMed  PubMed Central  Google Scholar 

  • Harwood CR, Mouillon J-M, Pohl S, Arnau J (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42(6):721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Helmann JD, Chamberlin MJ (1987) DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative sigma factor. Proc Natl Acad Sci USA 84:6422–6424. https://doi.org/10.1073/pnas.84.18.6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillebrand H, Bartling D, Weiler EW (1998) Structural analysis of the nit2/nit1/nit3 gene cluster encoding nitrilases, enzymes catalyzing the terminal activation step in indole-acetic acid biosynthesis in Arabidopsis thaliana. Plant Mol Biol 36:89–99

    Article  CAS  PubMed  Google Scholar 

  • Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O (2016) Structure and engineering of Francisella novicida Cas9. Cell 164(5):950–961. https://doi.org/10.1016/j.cell.2016.01.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Mariston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW, Maiden MC, Priest FG, Barker M, Jiang L, Cer RZ, Rilstone J, Reed TD, Popovic T, Fraiser CM (2004) Identification of anthrax toxin genes in Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollensteiner J, Wemheuer F, Harting R, Kolarzyk AM, Valerio SMD, Poehlein A, Brzuszkiewicz EB, Nesemann K, Braus-Stromeyer SA, Braus GH, Daniel R, Liesegang H (2017) Bacillus thuringiensis and Bacillus weihenstephanensis inhibit the growth of phytopathogenic Verticillium species. Front Microbiol 7:2171. https://doi.org/10.3389/fmicb.2016.02171

    Article  PubMed  PubMed Central  Google Scholar 

  • Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185(4):1289–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  PubMed  Google Scholar 

  • Hong K-Q, Liu D-Y, Hen T, Wang Z-W (2018) Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis. World J Microbiol Biotechnol 34:153

    Article  PubMed  Google Scholar 

  • Honma M, Tanaka K, Konno K, Tsuge K, Okuno T, Hashimoto M (2012) Termination of the structural confusion between plipastatin A1 and fengycin IX. Bioorg Med Chem 20:3793–3798

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Chen CY (2005) High-level expression and characterization of two chitinases, ChiCH and ChiCW, of Bacillus cereus 28-9 in Escherichia coli. Biochem Biophys Res Commun 327(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xu C, Ma L, Zhang K, Duan C, Mo M (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422. https://doi.org/10.1007/s10658-009-9550-z

    Article  CAS  Google Scholar 

  • Hulett FM, Bookstein CRESCENCE, Jensen K (1990) Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J Bacteriol 172(2):735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, Marahiel MA (2006) Cold induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis. J Bacteriol 188(1):240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huo Y, Zhan Y, Wang Q, Li S, Yang S, Nomura CT, Wang C, Chen S (2018) Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02:enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Bioprocess Biosyst Eng 41:87–96. https://doi.org/10.1007/s00449-017-1847-2

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178. PMID:14651859

    Article  CAS  PubMed  Google Scholar 

  • Iborta P, Imaib H, Uemurab M, Arocaa R (2018) Proteomic analysis reveals that tomato interaction with plant growth promoting bacteria is highly determined by ethylene perception. J Plant Physiol 220:43–59

    Article  CAS  Google Scholar 

  • Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Am Phytopathol Soc 20(6):619–626

    CAS  Google Scholar 

  • Idriss EES, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB 45 contributes to its plant growth-promoting effect. Microbiology 148:2097–2109

    Article  CAS  PubMed  Google Scholar 

  • Irizarry I, White JF (2018) Bacillus amyloliquefaciens alters gene expression, ROSproduction and lignin synthesis in cotton seedling roots. J Appl Microbiol 124:1589–1603. https://doi.org/10.1111/jam.13744

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Hossain MM (2012) Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin, pp 325–363

    Chapter  Google Scholar 

  • Islam MT, Hossain MM (2013) Biological control of peronosporomycete phytopathogens by antagonistic bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant disease management. Springer, Berlin, pp 167–218

    Chapter  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal Q, Cho J-Y, Moon J-H, Munir S, Anees M, Kim KY (2017) Identification for the first time of Cyclo(d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a nematocide for control of Meloidogyne incognita. Molecules (Basel, Switzerland) 22(11):1839. https://doi.org/10.3390/molecules22111839

    Article  CAS  Google Scholar 

  • Jamil M, Zeb S, Anees M, Roohi A, Ahmed I et al (2014) Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytoremed 16:554–571

    Article  CAS  Google Scholar 

  • Jansen-Girgan C, Claassens S, Fourie H (2016) In vitro evaluations to determine the effect of Bacillus firmus strains on the motility of Meloidogyne incognita second-stage juveniles. Tropical Plant Pathol 41(5):320–324

    Article  Google Scholar 

  • Jasim B, Sreelakshmi KS, Mathew J, Radhakrishnan EK (2016) Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri. Microb Ecol 72(1):106–119. https://doi.org/10.1007/s00248-016-0753-5

    Article  CAS  PubMed  Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Choi SK, Kloepper JW, Ryu CM (2014) Genome sequence of the plant endophytic Bacillus pumilus triggering induced systemic resistance in field crops. Genome Announc 2(5):e01093–e01014. https://doi.org/10.1128/genomeA.01093-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeong H, Jo SH, Hong CE, Park JM (2016) Genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, a potential biocontrol agent against phytopathogens. Genome Announc 4:e00279–e00216

    PubMed  PubMed Central  Google Scholar 

  • Jogaiah S, Shivanna RK, Gnanaprakash PH, Hunthrike SS (2010) Evaluation of plant growth-promoting rhizobacteria for their efficiency to promote growth and induce systemic resistance in pearl millet against downy mildew disease. Arch Phytopathol Plant Protect 43:368–378

    Article  Google Scholar 

  • Jurenka JS (2012) Bacillus coagulans. Altern Med Rev 17:76–81

    PubMed  Google Scholar 

  • Kalai-Grami L, Karkouch I, Naili O, Slimene IB, Elkahoui S, Zekri RB, Touati I, Mnari-Hattab M, Hajlaoui MR, Limam F (2016) Production and identification of iturin A lipopeptide from Bacillus methyltrophicus TEB1 for control of Phoma tracheiphila. J Basic Microbiol 56:864e871

    Article  CAS  Google Scholar 

  • Kang W, Zhu X, Wang Y, Chen L, Duan Y (2018a) Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematodein soybean. BMC Plant Biol 18:86. https://doi.org/10.1186/s12870-018-1302-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, Zhang W, Cai X, Zhu T, Xue Y, Liu C (2018b) Bacillus velezensis CC09: a potential ‘vaccine’ for controlling wheat diseases. Mol Plant-Microbe Interact 31(6):623–632. https://doi.org/10.1094/MPMI-09-17-0227-R

    Article  CAS  PubMed  Google Scholar 

  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749

    Article  CAS  PubMed  Google Scholar 

  • Khan MMA, Khatun A, Islam MT (2016) Promotion of plant growth by phytohormone producing bacteria. In: Garg N, Aeron A (eds) Microbes in action. Nova Science Publishers, New York, pp 45–76

    Google Scholar 

  • Kim YO, Lee JK, Kim HK, Yu JH, Oh TK (1998) Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiol Lett 162(1):185–191

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Lee JE, Nie H, Lee YJ, Kim ST, Kim S-H (2017) Physiological and proteomic analysis of plant growth enhancement by the rhizobacteria Bacillus sp. JS Genes Genom. https://doi.org/10.1007/s13258-017-0615-7

  • Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria. Can J Microbiol 38:1219–1232

    Article  Google Scholar 

  • Konuray G, Erginkaya Z (2018) Potential use of Bacillus coagulans in the food industries. Foods 7:92. https://doi.org/10.3390/foods7060092

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar A, Prakash A, Johri B (2011) Bacillus as PGPR in crop ecosystem. In: Bacteria in agrobiology: crop ecosystems. Springer, pp 37–59

    Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni GO, Azevedo V, Borriss R (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–256

    Article  CAS  PubMed  Google Scholar 

  • Kwon YS et al (2010) Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355–1370

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2006) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Lee YS, Kim KY (2016) Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J Phytopathol 164(1):29–39. https://doi.org/10.1111/jph.12421

    Article  CAS  Google Scholar 

  • Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246

    Article  CAS  Google Scholar 

  • Li MHT, Ung PMU, Zajkowski J, Garneau-Tsodikova S, Sherman DH (2009) Automated genome mining for natural products. BMC Bioinf 10:185. https://doi.org/10.1186/1471-2105-10-185

    Article  CAS  Google Scholar 

  • Li J, Bi F-C, Yin J, Wu J-LJ-X, Rong C, Wu J-LJ-X, Yao N (2015) An Arabidopsis neutral ceramidase mutant ncer1 accumulates hydroxy ceramides and is sensitive to oxidative stress. Front Plant Sci 6:460. https://doi.org/10.3389/fpls.2015.00460

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201–208. https://doi.org/10.5423/PPJ.SI.02.2013.0021

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu G, Chater KF, Chandra G, Niu G, Tan H (2013) Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Fan X, Cheng H, Yin S, Zhang G, Xi Y, An L, Zhang L (2018) Characterization of a gene regulating antibiotic production in Bacillus subtilis BSD-2. Biotechnol Biotechnol Equip 32(2):332–338. https://doi.org/10.1080/13102818.2017.1329633

    Article  CAS  Google Scholar 

  • Lopes R, Cerdeira L, Tavares GS, Ruiz JC, Blom J, Horacio ECA et al (2017) Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 33:185

    Article  PubMed  Google Scholar 

  • Lopes R, Tsui S, Gonçalves PJRO, Vieira de Queiroz M (2018) A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol 34:94. https://doi.org/10.1007/s11274-018-2479-7

    Article  PubMed  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernández-Calderón E et al (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217. https://doi.org/10.1094/MPMI-20-2-0207

    Article  CAS  PubMed  Google Scholar 

  • Luque-Almagro VM, Gates AJ, Moreno-Vivián C, Ferguson SJ, Richardson DJ, Roldán MD (2011) Bacterial nitrate assimilation: gene distribution and regulation. Biochem Soc Trans 39(6):1838–1843

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wang C, Wang H, Liu K, Zhang T, Yao L, Zhao Z, DU B, Ding Y (2018) Analysis of the complete genome sequence of Bacillus atrophaeus GQJK17 reveals its biocontrol characteristics as a plant growth-promoting rhizobacterium. BioMed Res Internal 2018:9473542. https://doi.org/10.1155/2018/9473542

    Article  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides:biological and physicochemical properties. Toxicology 87:151e174

    Article  Google Scholar 

  • Makarewicz O, Dubrac S, Msadek T, Borriss R (2006) Dual role of the PhoP~P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interaction with the phyC promoter. J Bacteriol 188:6953–6965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannaa M, Kim KD (2018) Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus and Penicillium spp. predominant in stored rice grains: study II. Mycobiology 46(1):52–63. https://doi.org/10.1080/12298093.2018.1454015

    Article  PubMed  PubMed Central  Google Scholar 

  • Marseglia GL, Tosca M, Cirillo I, Licari A, Leone M, Marseglia A, Castellazzi AM, Ciprandi G (2007) Efficacy of Bacillus clausii spores in theprevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag 3:13e17. Available at: https://www.dovepress.com/articles.php?article_id-1150

    Article  Google Scholar 

  • Mashiane RA, Ezeokoli OT, Adeleke RA, Bezuidenhout CC (2017) Metagenomic analyses of bacterial endophytes associated with the phyllosphere of a Bt maize cultivar and its isogenic parental line from South Africa. World J Microbiol Biotechnol 33:80

    Article  CAS  PubMed  Google Scholar 

  • May JJ, Wendrich TM, Marahiel MA (2001) The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2, 3dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276(10):7209–7217

    Article  CAS  PubMed  Google Scholar 

  • McDaniel BA, Grundy FJ, Kurlekar VP, Tomsic J, Henkin TM (2006) Identification of a mutation in the Bacillus subtilis S-adenosylmethionine synthetase gene that results in derepression of S-box gene expression. J Bacteriol 188(10):3674–3681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medema MH, Breitling R, Bovenberg R, Takano E (2011) Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat Rev Microbiol 9:131–137

    Article  CAS  PubMed  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Res Int 9:473050

    Google Scholar 

  • Mendis HC, Thomas VP, Schwientek P, Salamzade R, Chien J-T, Waidyarathne P et al (2018) Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmusI-1582 and Bacillus amyloliquefaciensQST713 in non-sterile soil and field conditions. PLoS ONE 13(2):e0193119. https://doi.org/10.1371/journal.pone.0193119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer H, Weidmann H, Lalk M (2013) Methodological approaches to help unravel the intercellular metabolome of Bacilus subtilis. Microb Cell Factories 12:69

    Article  CAS  Google Scholar 

  • Mia MAB, Hossain MM, Shamsuddin ZH, Islam MT (2013) Plant-associated bacteria in nitrogen in crops, with special reference to rice and banana. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. Springer-Verlag, Berlin/Heidelberg, pp 97–126

    Chapter  Google Scholar 

  • Mielich-Süss B, Lopez D (2015) Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol 17:555–565

    Article  PubMed  Google Scholar 

  • Miethke M, Bisseret P, Beckering CL et al (2006) Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273:409–419. https://doi.org/10.1111/j.1742-4658.2005.05077.x

    Article  CAS  PubMed  Google Scholar 

  • Miethke M, Schmidt S, Marahiel MA (2008) The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J Bacteriol 190:5143–5152. https://doi.org/10.1128/JB.00464-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirel DB, Chamberlin MJ (1989) The Bacillus subtilis flagellin gene(hag) is transcribed by the sigma 28 form of RNA polymerase. J Bacteriol 171:3095–3101. https://doi.org/10.1128/jb.171.6.3095-3101.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL (2006) Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186. https://doi.org/10.1111/j.1574-6976.2005.00008.x

    Article  CAS  PubMed  Google Scholar 

  • Mondol MAM, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry, biosynthesis and biological activity. Mar Drugs 11:2846–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Moreno CY, De La Cruz-Rodríguez L, Vega-Arreguín J, Alvarado-Rodríguez M, Gómez-Soto JM, Alvarado-Gutiérrez A, Fraire-Velázquez S (2018) Draft genome sequence of Bacillus subtilis 2C-9B, a strain with biocontrol potential against chili pepper root pathogens and tolerance to Pb and Zn. Genome Announc 6:e01502–e01517

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano MM (2002) Induction of ResDE-dependent gene expression in Bacillus subtilis in response to nitric oxide and nitrosative stress. J Bacteriol 184(6):1783–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, Hyakumachi M (2014) Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana. PLoS ONE 9(1):e86882. https://doi.org/10.1371/journal.pone.0086882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler J, Keyes SD, Wissuwa M (2016) Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions. J Exp Bot 67:3699–3708. https://doi.org/10.1093/jxb/erw115

    Article  CAS  PubMed  Google Scholar 

  • Ng CY, Jung MY, Lee J, Oh MK (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen DM, Lipscomb GL, Schut GJ, Vaccaro BJ, Basen M, Kelly RM, Adams MW (2016) Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metab Eng 34:71–79

    Article  CAS  PubMed  Google Scholar 

  • Niazi A, Manzoor S, Asari S, Bejai S, Meijer J, Bongcam-Rudloff E (2014a) Genome analysis of Bacillus amyloliquefaciens subsp. plantarum UCMB5113: A rhizobacterium that improves plant growth and stress management. PloS One 9(8):e104651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niazi A, Manzoor S, Bejai S, Meijer J, Bongcam-Rudloff E (2014b) Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033. Stand Genomic Sci 9(3):718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu Q, Huang X, Zhang L, Lian L, Li Y, Li J, Zhang K (2007) Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida. Appl Microbiol Biotechnol 75(1):141–148. https://doi.org/10.1007/s00253-006-0794-7

    Article  CAS  PubMed  Google Scholar 

  • Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Noone D, Howell A, Collery R, Devine KM (2001) YkdA and YvtA, HtrA-like serine proteases in Bacillus subtilis, engage in negative autoregulation and reciprocal cross regulation of ykdA and yvtA gene expression. J Bacteriol 183(2):654663

    Article  Google Scholar 

  • Okada M, Nakamura Y, Hayashi S et al (2015) Chemical structure and biological activity of a quorum sensing pheromone from Bacillus subtilis subsp natto. Bioorg Med Chem Lett 19:4293–4296

    Article  CAS  Google Scholar 

  • Oliveira SS, Seldin L, Bastos MCF (1993) Identification of structural nitrogen fixation (nif) genes in Bacillus polymyxa and Bacillus macerans. World J Microbiol Biotechnol 9(3):387–389

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005) Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67(5):692–698

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3(4):263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Protect 26(7):971–977. https://doi.org/10.1016/j.cropro.2006.09.004

    Article  Google Scholar 

  • Palazzotto E, Weber T (2018) Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Microbiol 8(45):109–116. https://doi.org/10.1016/j.mib.2018.03.004

    Article  CAS  Google Scholar 

  • Palazzotto E, Renzone G, Fontana P, Botta L, Scaloni A, Puglia AM, Gallo G (2015) Tryptophan promotes morphological and physiological differentiation in Streptomyces coelicolor. Appl Microbiol Biotechnol 99:10177–10189

    Article  CAS  PubMed  Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6:3296–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflughoeft KJ, Sumby P, Koehler TM (2011) Bacillus anthracis sin locus and regulation of secreted proteases. J Bacteriol 193:631–639

    Article  CAS  PubMed  Google Scholar 

  • Phister TG, O’Sullivan DJ, McKay LL (2004) Identification of bacilysin, chlorotetaine, and iturin A produced by Bacillus sp. strain CS93 isolated from pozol, a mexican fermented maize dough. Appl Environ Microbiol 70:631e634

    Article  CAS  Google Scholar 

  • Pleban S, Cherin L, Chet I (1997) Chitinolic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    Article  CAS  PubMed  Google Scholar 

  • Podile AR, Kishore GK (2007) Plant growth-promoting rhizobacteria. In: Plant-associated bacteria. Springer, pp 195–230

    Google Scholar 

  • Potshangbam M, Sahoo D, Verma P, Verma S, Kalita MC, Indira DS (2018) Draft genome sequence of Bacillus altitudinisLc5, a biocontrol and plant growth-promoting endophyte strain isolated from indigenous black rice of Manipur. Genome Announc 6:e00601–e00618. https://doi.org/10.1128/genomeA.00601-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Pylro VS, Dias ACF, Andreote FD, Morais DK, Varani AM, Andreote CCF, Bernardo ERA, Zucchie T (2018) Closed genome sequence of phytopathogen biocontrol agent Bacillus velezensis strain AGVL-005, isolated from soybean. Genome Announc 6:e00057–e00018. https://doi.org/10.1128/genomeA.00057-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Qing-gang G, Li-hong D, Pei-pei W, She-zeng L, Wei-song Z, Xiu-yun L, Xiao-yun Z, Ping M (2018) The PhoR/PhoP two-component system regulates fengycin production in Bacillus subtilis NCD-2 under low-phosphate conditions. J Integr Agric 17(1):149–157. https://doi.org/10.1016/S2095-3119(17)61669-1

    Article  Google Scholar 

  • Radhakrishnan R, Hashem A, Abd Allah EF (2017) Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol 8:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-ud-Din M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkhulderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Reports 8:2504

    Article  CAS  Google Scholar 

  • Ramezani Moghaddam M, Mahdikhani Moghaddam E, Baghaee Ravari S, Rouhani H (2014) The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Sci Technol 24(3):279–290. https://doi.org/10.1080/09583157.2013.858100

    Article  Google Scholar 

  • Ranocha P, Dima O, Nagy R, Felten J, Corratge-Faillie C, Novak O, Morreel K, Lacombe B et al (2013) Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homeostasis. Nat Commun 4:2625

    Article  CAS  PubMed  Google Scholar 

  • Rath M, Mitchell TR, Gold SE (2018) Volatiles produced by BacillusmojavensisRRC101 act as plant growth modulators and are strongly culture-dependent. Microbiol Res 208:76–84

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Barrett AJ, Finn R (2016) Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44:D343–D350

    Article  CAS  PubMed  Google Scholar 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856. https://doi.org/10.1038/srep24856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read TD, Peterson SN, Tourasse N, Baillie LW, Paulsen IT, Nelson KE, Holtzapple EK (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423(6935):81–86

    Article  CAS  PubMed  Google Scholar 

  • Rekhaa K, Baskarb B, Srinathb S, Ushaa B (2017) Plant growth promoting rhizobacteria Bacillus subtilis RR4 1 isolated from rice 2 rhizosphere induces malic acid biosynthesis in rice roots. Can J Microbiol 64:20–27

    Article  CAS  Google Scholar 

  • Reshma SV, Sathyanarayanan N, Nagendra HG (2017) Characterization of a hypothetical protein YVRE from Bacillus subtilis indicates its key role as glucono-lactonase in pentose phosphate pathway and glucose metabolism. Bioinformation 13(12):430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribaudo CM, Krumpholz EM, Cassan FD, Botin R, Cantore ML, Cura JA (2006) Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. J Plant Growth Regul 24:175–185

    Article  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, Oliveira ALM, Baldani VLD, Teixeira KRS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N 2 fixation of rice (Oryza sativa L.). Plant Soil 302(1):249–261

    Article  CAS  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98. https://doi.org/10.1016/j.copbio.2014.11.015

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Rathod A, Pramanik A (2017) Nematicidal activity of Bacillus subtilis against root knot nematode Meloidogyne incognita (kofoid and white) chitwood in tomato. Environ Ecol 35(1B):469–473

    Google Scholar 

  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Pare PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systrmic resistance in Arabidopsis thaliana. Commun Integr Biol 3(2):130–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu C-M, Hu C-H, Reddy MS, Kloepper JW (2003) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160:413–420

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sa ALB, Dias ACF, Teixeira MA, Vieira RF (2012) Contribution of N2 fixation for the world agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer, Berlin/Heidelberg, pp 315–324. https://doi.org/10.1007/978-3-642-27515-9_17

    Chapter  Google Scholar 

  • Saharan B (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sarangi T, Ramakrishnan S, Nakkeeran S (2014) Isolation and evaluation of indigenous isolates of Bacillus spp. against Meloidogyne incognita. Int J Tropical Agric 32(1/2):15–18

    Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378. https://doi.org/10.1007/s11103-007-9274-4

    Article  CAS  PubMed  Google Scholar 

  • Schöck F, Dahl MK (1996) Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme II Tre and a potential regulator of the trehalose operon. Gene 175(1):59–63

    Article  PubMed  Google Scholar 

  • Seldin L, Bastos MCF, Penido EGC (1989) Identification of Bacillus azotofixans nitrogen fixation genes using heterologous nif probes. In: Nitrogen fixation with nonlegumes. Springer, Dordrecht, pp 179–187

    Google Scholar 

  • Sengupta S, Ganguli S, Singh PK (2017) Metagenome analysis of the root endophytic microbial community of Indian rice (O. sativa L.). Genomics Data 12:41–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Sha J, Zhang J, Chi B, Liu R, Li H, Gao J (2018) Sip1Ab gene from a native Bacillus thuringiensis strain QZL38 and its insecticidal activity against Colaphellus bowringi Baly. Biocontol Sci Technol. https://doi.org/10.1080/09583157.2018.1460313

  • Shao J, Li S, Zhang N, Cui X, Zhou X, Zhang G, Zhang R (2015) Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Fact 14(1):2–13

    Article  CAS  Google Scholar 

  • Shaligram S, Kumbhare SV, Dhotre DP, Muddeshwar MG, Kapley A, Joseph N, Purohit HP, Shouche YS, Pawa SP (2016) Genomic and functional features of the biosurfactant producing Bacillus sp. AM13 Functional & Integrative Genomics 16(5):557–566

    Article  CAS  Google Scholar 

  • Shi B, Wu W, Wen J, Shi Q, Wu S (2010) Cloning and expression of a lipase gene from Bacillus subtilis FS1403 in Escherichia coli. Annals of Microbiol 60(3):399–404

    Article  CAS  Google Scholar 

  • Sieciechowicz KA, Joy KW, Ireland RJ (1988) The metabolism of asparagine in plants. Phytochemistry 27:663–671

    Article  CAS  Google Scholar 

  • Skinnider MA, Dejong CA, Rees PN, Johnston CW, Li H, Webster AL, Wyatt MA, Magarvey NA (2015) Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM). Nucleic Acids Res 43:9645–9662

    CAS  PubMed  PubMed Central  Google Scholar 

  • So Y, Park SY, Park EH, Park SH, Kim EJ, Pan JG, Choi SK (2017) A highly efficient CRISPR-Cas9-ediated large genomic deletion in Bacillus subtilis. Front Microbiol 8:1167. https://doi.org/10.3389/fmicb.2017.01167

    Article  PubMed  PubMed Central  Google Scholar 

  • Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y et al (2004) Complete genome sequence of Yersinia pestis strain 91001, an isolate a virulent to humans. DNA Res 11:179–197. https://doi.org/10.1093/dnares/11.3.179

    Article  CAS  PubMed  Google Scholar 

  • Soriano M, Diaz P, Pastor FIJ (2006) Pectate lyase C from Bacillus subtilis: a novel endo-cleaving enzyme with activity on highly methylated pectin. Microbiology 152(3):617–625

    Article  CAS  PubMed  Google Scholar 

  • Steele K, Virk D, Kumar R et al (2007) Field evaluation of upland rice lines selected for QTLs controlling root traits. Field Crops Res 101:180–186. https://doi.org/10.1016/j.fcr.2006.11.002

    Article  Google Scholar 

  • Sun Z, Hsiang T, Zhou Y, Zhou J (2015) Draft genome sequence of Bacillus amyloliquefaciens XK-4-1, a plant growth-promoting endophyte with antifungal activity. Genome Announc 3:e01306–e01315

    PubMed  PubMed Central  Google Scholar 

  • Tahir HA, Gu Q, Wu H, Raza W, Hanif A, Wu L et al (2017) Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front Microbiol 8:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang M, Sun X, Zhang S, Wan J, Li L, Ni H (2017) Improved catalytic and antifungal activities of Bacillus thuringiensis cells with surface display of Chi9602DSP. J Appl Microbiol 122:106–118

    Article  CAS  PubMed  Google Scholar 

  • Tapi A, Chollet-Imbert M, Scherens B, Jacques P (2010) New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85:1521–1531. https://doi.org/10.1007/s00253-009-2176-4

    Article  CAS  PubMed  Google Scholar 

  • Tareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, Islam MT, Shin HJ (2014a) Gageotetrins A-C, noncytotoxic antimicrobial linear lipopeptides from a marine bacterium Bacillus subtilis. Org Lett 16:928–931

    Article  CAS  PubMed  Google Scholar 

  • Tareq FS, Lee MA, Lee HS, Lee YJ, Lee JS, Hasan CM, Islam MT, Shin HJ (2014b) Non-cytotoxic antifungal agents: isolation and structures of gageopeptides from a marine-derived Bacillus subtilis 109GGC020. J Agric Food Chem 62(24):5565–5572

    Article  CAS  PubMed  Google Scholar 

  • Terra R, Stanley-Wall NR, Cao G, Lazazzera BA (2012) Identification of Bacillus subtilis SipW as a biofunctional signal peptidase that controls surface-adhered biofilm formation. J Bacteriol. https://doi.org/10.1128/JB.06780-11

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from the rhizosphere of rice grown in acidic soils of. Assam Curr Sci 86:978–985

    Google Scholar 

  • Todd JA, Hubbard TJP, Travers AA, Ellar DJ (1985) Heat-shock proteins during growth and sporulation of Bacillus subtilis. FEBS Lett 188(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Tsau JL, Guffanti AA, Montville TJ (1992) Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum. Appl Environ Microbiol 58:891–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyc O, Song C, Dickschat JS, Vos M, Garbeva P (2017) The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends in Microbiol. https://doi.org/10.1016/j.tim.2016.12.002

  • Uga Y, Sugimoto K, Ogawa S et al (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097. https://doi.org/10.1038/ng.2725

    Article  CAS  PubMed  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud M-L et al (2014) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:1–19. https://doi.org/10.3389/fpls.2013.00356

    Article  Google Scholar 

  • van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuipers OP (2013) BAGEL3: automated identification of genes encoding bacteriocins and(non-)bactericidal post translationally modified peptides. Nucleic Acids Res 41:W448–W453. https://doi.org/10.1093/nar/gkt391

    Article  PubMed  PubMed Central  Google Scholar 

  • van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP (2018) BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46(1):278–281

    Google Scholar 

  • Vieira-Pires RS, Szollosi A, Morais-Cabral JH (2013) The structure of the KtrAB potassium transporter. Nature 496(7445):323–328

    Article  CAS  PubMed  Google Scholar 

  • Vinci G, Cozzolino V, Mazzei P, Monda H, Savy D, Drosos M, Piccolo A (2018) Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil. https://doi.org/10.1007/s11104-018-3701-y

  • Vockenhuber MP, Sharma CM, Statt MG, Schmidt D, Xu Z, Dietrich S, Liesegang H, Mathews DH, Suess B (2011) Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor. RNA Biol 8:468–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X, Ma P (2015) DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiol Res 178:42–50

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Wang H, Xiong J, Zhou Q, Wu H, Xia L, Li L, Yu Z (2017) A Proteomic analysis provides novel insights into the stress responses of Caenorhabditis elegans towards nematicidal Cry6AToxin from Bacillus thuringiensis. Sci Rep 7:14170. https://doi.org/10.1038/s41598-017-14428-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Liu X-H, Wu M-B, Ge S (2018) Molecular insights into the antifungal mechanism of bacilysin. J Mol Model 24:118. https://doi.org/10.1007/s00894-018-3645-4.

    Article  PubMed  Google Scholar 

  • Westbrook AW, Moo-Young M, Chou CP (2016) Development of a CRISPR-Cas9 Tool Kit forcomprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82(16):4876–4895. https://doi.org/10.1128/AEM.01159-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JF, Torres MS (2010) Is plant endophyte mediated defensive mutualism the result of oxidative stress protection? Physiol Plant 138:440–446

    Article  CAS  PubMed  Google Scholar 

  • Wray LV Jr, Fisher SH (2008) Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase. Mol Microbiol 68:277–285

    Article  CAS  PubMed  Google Scholar 

  • Wu J-Y, Liao J-H, Shieh C-J, Hsieh F-C, Liu Y-C (2018) Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciensBPD1. J Biosci Bioeng. In Press

    Google Scholar 

  • Xiang P, Chen L, Zhu X, Wang Y, Duan Y (2013) Screening and identification of bacterium to induce resistance of soybean against Heterodera glycines. Chin J Biol Control 29(4):661–665

    Google Scholar 

  • Xiang N, Lawrence KS, Kloepper JW, Donald PA, McInroy JA, Lawrence GW (2017) Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton. Plant Dis 101(5):774–784

    Article  CAS  PubMed  Google Scholar 

  • Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27:655–663. https://doi.org/10.1094/MPMI-01-14-0010-R

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Zhou Q, Luo H, Xia L, Li L, Sun M, Yu Z (2015) Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World J Microbiol Biotechnol 31(4):661–667. https://doi.org/10.1007/s11274-015-1820-7

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, Antony I, Glick BR (2015) Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 107:1519–1532

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Yu SH, Ryu CM (2009) Priming of defense-related genes confers root-colonizing bacilli elicited induced systemic resistance in pepper. Plant Pathol J 25:389–399

    Article  Google Scholar 

  • Yi HS, Ahn YR, Song GC, Ghim SY, Lee S, Lee G, Ryu CM (2016) Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis rhizosphere robustness. Front Microbiol 7:993. https://doi.org/10.3389/fmicb.2016.00993

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi Y, Jong A, Frenzel E, Kuipers OP (2017) Comparative transcriptomics of Bacillus mycoides strains in response to potato-root exudates reveals different genetic adaptation of endophytic and soil isolates. Front Microbiol 8:1487. https://doi.org/10.3389/fmicb.2017.01487

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Yan F, He Y, Qin Y, Chen Y, Chai Y, Guo J (2018) The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiology 164:848–862. https://doi.org/10.1099/mic.0.000658

    Article  CAS  PubMed  Google Scholar 

  • Zghal RZ, Ghedira K, Elleuch J, Kharrat M, Tounsi S (2018) Genome sequence analysis of a novel Bacillus thuringiensis strain BLB406 active against Aedes aegypti larvae, a novel potential bioinsecticide. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.05.119

  • Zhang L, Sun C (2018) Cyclic lipopeptides fengycins from marine bacterium Bacillus subtilis kill plant pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00445-18

  • Zhang H, Yang D, Wang D, Miao Y, Shao J, Zhou X, Xu Z, Li Q, Feng H, Li S (2015) Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genom 16:685

    Article  CAS  Google Scholar 

  • Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Protect 84:8–13. https://doi.org/10.1016/j.cropro.2015.12.009

    Article  CAS  Google Scholar 

  • Ziemert N, Alanjary M, Weber T (2016) The evolution of genome mining in microbes – a review. Nat Prod Rep 33:988–1005

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman SB, Schwartz CD, Monaghan RL, Pelak BA, Weissberger B, Gilfillan EC (1986) Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis: production, taxonomy and antibacterial activity. J Antibiot 12:1677–1681

    Google Scholar 

  • Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48:460–466

    Article  CAS  PubMed  Google Scholar 

  • Zou H, Wenwen Y, Zang G et al (2015) OsEXPB2, a β-expansin gene, is involved in rice root system architecture. Mol Breed 35:41. https://doi.org/10.1007/s11032-015-0203-y

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Bangladesh Academy of Sciences for funding this work under the BAS-USDA project to MTI. The authors are also thankful to the RMC of BSMRAU, University Grants Commission of Bangladesh, and Ministry of Science and Technology of Bangladesh for partial funding to this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Surovy, M.Z., Gupta, D.R., Mahmud, N.U., Dame, Z.T., Roy, P.K., Islam, M.T. (2019). Genomics and Post-genomics Approaches for Elucidating Molecular Mechanisms of Plant Growth-Promoting Bacilli. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_10

Download citation

Publish with us

Policies and ethics