Skip to main content

Management of Fungal Diseases on Cucumber (Cucumis sativus L.) and Tomato (Solanum lycopersicum L.) Crops in Greenhouses Using Bacillus subtilis

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol

Abstract

Bacillus subtilis is a potential biocontrol agent for management of fungal diseases on greenhouse crops. Colonization of plant roots by B. subtilis enhances growth and reduces disease incidence and severity to minimize yield losses and improve quality. The mechanisms through which B. subtilis may contribute to control of fungal diseases include competition with other microbes, production of inhibitory chemicals, and induction of plant resistance. Specific strains of B. subtilis exhibit strong antagonistic activity against mycelial growth of different fungal pathogens through antibiotic production. The effectiveness of B. subtilis strain QST 713 against several important diseases of cucumber and tomato grown under greenhouse conditions was assessed. The major diseases on cucumber are Pythium crown and root rot (Pythium aphanidermatum), Fusarium root and stem rot (Fusarium oxysporum f. sp. radicis-cucumerinum), gummy stem blight (Didymella bryoniae, anamorph Phoma cucurbitacearum), and powdery mildew (Podosphaera xanthii). On greenhouse tomatoes, the most important diseases are gray mold (Botrytis cinerea), Pythium damping-off (Pythium aphanidermatum), Fusarium wilt (Fusarium oxysporum), and powdery mildew (Oidium neolycopersici). Applications of B. subtilis made on cucumber and tomato plants before or after the onset of pathogen inoculation demonstrated efficacy against various diseases. The potential for broad-spectrum activity against different pathogens on these crops is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Allah EF, Ezzat SM, Tohamy MR (2007) Bacillus subtilis as an alternative biologically based strategy for controlling Fusarium wilt disease in tomato: a histological study. Phytoparasitica 35:474–478

    Article  Google Scholar 

  • Agriculture and Agri-Food Canada (2006) Crop greenhouse tomato in Canada. Available from: http://publications.gc.ca/collections/collection_2009/agr/A118-10-24-2006E.pdf

  • Agriculture and Agri-Food Canada (2016) Crop profile for greenhouse tomato in Canada, 2014. Available from: http://publications.gc.ca/collections/collection_2016/aac-aafc/A118-10-24-2014-eng.pdf

  • Agriculture and Agri-Food Canada (2017) Statistical overview of the Canadian greenhouse vegetable industry 2016. Available from: http://www.agr.gc.ca/resources/prod/doc/pdf/st_ovrv_greenhouse_legumes_de_serre_2016-rev-eng.pdf

  • Akram W, Anjum T (2011) Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Indian J Fund Appl Life Sci 1:7–13

    Google Scholar 

  • Alabouvette C, Olivain C, Steinberg C (2006) Biological control of plant diseases: the European situation. Eur J Plant Pathol 114:329–341

    Article  Google Scholar 

  • Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier J, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involve multiple chemotaxis receptors. MBio 7:e01664–e01616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen DJ, Ampofo JKO, Wortmann CS (1996) Pests, diseases, and nutritional disorders of the common bean in Africa: A field guide. Centro Internacional de Agricultura Tropical (CIAT). CIAT Publication no. 260. Technical Centre for Agricultural and Rural Cooperation (TCA), Wageningen, Cali, CO. 132 p.

    Google Scholar 

  • Al-Tuwaigri MMY (2008) Biological control of Fusarium root rot of cucumber (Cucumis sativus L.) by rhizospheric isolates of Bacillus subtilis and Trichoderma viride. Egypt J Exp Biol 4:79–86

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baruzzi F, Quintien L, Morea M, Caputo L (2011) Antimicrobial compounds produced by Bacillus spp. and applications to food. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technical advances. Fomatex Microbiology Series 3, Formatex Research Center, Badajoz, pp 1102–111

    Google Scholar 

  • Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Natl Acad Sci 110:E1621–E1630

    Article  Google Scholar 

  • Becker OJ, Schwinn FJ (1993) Control of soil borne pathogens with living bacteria and fungi: status and outlook. Pestic Sci 37:355–363

    Article  Google Scholar 

  • Brown J (2002) Comparative genetics of avirulence and fungicide resistance in the powdery mildew fungi. In: Bélanger R, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews. A comprehensive treatise. APS Press, St. Paul, pp 56–65

    Google Scholar 

  • Burr TJ, Caesar AJ (1984) Beneficial plant bacteria. CRC Crit Rev Plant Sci 2:1–20

    Article  Google Scholar 

  • Cavaglieri L, Orlando J, Rodriguez M, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754

    Article  CAS  PubMed  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In pesticides in the modern world – pesticides use and management. Available from: https://www.intechopen.com/books/pesticides-in-the-modern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases

  • Cawoy H, Debois D, Franzil L, Pauw ED, Thonart P, Ongena M (2014) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerkauskas R (2012) Fusarium stem and root rot of greenhouse cucumber. Available from http://www.omafra.gov.on.ca/english/crops/facts/01-081.htm

  • Chitarra GS, Breeuwer P, Nout MJR, Aelst AC, Rombouts FM, Abee T (2002) An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J Appl Microbiol 94:159–166

    Article  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B, Prime A (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Corrêa OS, Soria MA (2010) Potential of Bacilli for biocontrol and its exploitation in sustainable agriculture. Microbiol Monogr 18:197–209

    Article  Google Scholar 

  • Corrêa EB, Bettiol W, Sutton JC (2010) Biocontrol of root rot (Pythium aphanidermatum) and growth promotion with Pseudomonas chlororaphis 63-28 and Bacillus subtilis GB03 in hydroponic lettuce. Summa Phytopathol 36:275–281

    Article  Google Scholar 

  • Danchin A (2001) Bacillus subtilis. In: Encyclopedia of genetics. Academic Press, Cambridge, MA, pp 135–144

    Chapter  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey D, Calpas J, Morton D, Dyck D (2017) Commercial greenhouse vegetable production. Government of Alberta agriculture and forestry. Available from: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex1443

  • Dickerson, GW (1996) Greenhouse vegetable production. Cooperative extension service. College of Agriculture and home economics. New Mexico State University. Available from: https://aces.nmsu.edu/pubs/_circulars/CR556.pdf

  • Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:6

    Article  CAS  Google Scholar 

  • Fan HY, Ru JJ, Zhang YY, Wang Q, Li Y (2017) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97

    Article  CAS  PubMed  Google Scholar 

  • Favrin RJ, Rahe JE, Mauza B (1988) Pythium spp. associated with crown rot of cucumbers in British Columbia greenhouses. Plant Dis 72:683–687

    Article  Google Scholar 

  • Ferguson G (2009) Gummy stem blight of greenhouse cucumber. Factsheet. Ontario ministry of agriculture, food and rural affairs. Available from: http://www.omafra.gov.on.ca/english/crops/facts/09-051w.htm

  • Foolad MR, Lin GY (2000) Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica 122:105–111

    Article  Google Scholar 

  • Garcia-Gutierrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Perez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilardi G, Manker DC, Garibaldi A, Gullino ML (2008) Efficacy of the biocontrol agents Bacillus subtilis and Ampelomyces quisqualis applied in combination with fungicides against powdery mildew of zucchini. J Plant Dis Prot 115:208–213

    Article  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Grosch R, Junge H, Krebs B, Bochow H (1999) Use of Bacillus subtilis as a biocontrol agent. III Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. J Plant Dis Prot 106:568–580

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Harrison G (1996) Grey mould (Botrytis) in greenhouse tomato crops. Department of environment and primary industries. Available from: http://agriculture.vic.gov.au/agriculture/pests-diseases-and-weeds/plant-diseases/vegetable/tomato-diseases/grey-mould-botrytis-in-greenhouse-tomato-crops

  • Higgins D, Dworkin J (2011) Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 36:131–148

    Article  CAS  PubMed  Google Scholar 

  • Hofte M, Bakker PAHM (2007) Competition for iron and induced systemic resistance by siderophores of plant growth promoting rhizobacteria. In: Microbi sideroph. Springer, Berlin/Heidelberg, pp 121–133

    Chapter  Google Scholar 

  • Hong SJ (2012) Study on the control of leaf mold, powdery mildew and gray mold for organic tomato cultivation. Korean J Organ Agric 20:655–668

    Article  Google Scholar 

  • Jahn M, Munger MH, McCreight DJ (2002) Breeding cucurbit crops for powdery mildew resistance. In: Belanger RR, Bushnell RW, Dik JA, Carver WLT (Eds) The powdery mildew. A comprehensive treatise, pp 239–248

    Google Scholar 

  • Jarvis WR, Shoemaker RA (1978) Taxonomic status of Fusarium oxysporum causing foot and root tor of tomato. Phytopathology 68:1679–1680

    Article  Google Scholar 

  • Kaewkham T, Hynes RK, Siri B (2016) The effect of accelerated seed ageing on cucumber germination following seed treatment with fungicides and microbial biocontrol agents for managing gummy stem blight by Didymella bryoniae. Biocontrol Sci Technol 26:1048–1061

    Article  Google Scholar 

  • Keinath AP, Dubose VB (2004) Evaluation of fungicides for prevention and management of powdery mildew on watermelon. Crop Prot 23:35–42

    Article  CAS  Google Scholar 

  • Khabbaz SE, Abbasi PA (2013) Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber. Can J Microbiol 60:25–33

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Maymon M, Hirsch AM (2017) Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms 5:75

    Article  CAS  PubMed Central  Google Scholar 

  • Kim Y, Song J, Lee I, Yeo W, Yun B (2013) Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology 41:108–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Kipngeno P, Losenge T, Maina N, Kahangi E, Juma P (2015) Efficacy of Bacillus subtilis and Trichoderma asperellum against Pythium aphanidermatum in tomatoes. Biol Control 90:92–95

    Article  Google Scholar 

  • Klich MA, Lax AR, Bland JM (1991) Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 116:77–80

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Peralta E (2016) The Tomato (Solanum lycopersicum L., Solanaceae) and its botanical relatives. In: Causse M et al (eds) The tomato genome, compendium of plant genomes. Springer, Berlin/Heidelberg, pp 7–21

    Google Scholar 

  • Krebs B, Hoding B, Kubart S, Workie MA, Junge H, Schmiedeknecht G, Grosch R, Bochow H, Hevesi M (1998) Use of Bacillus subtilis as biological agent. I Activities and characterization of Bacillus subtilis strains. J Plant Dis Prot 105:181–197

    Google Scholar 

  • Křıstková E, Lebeda A, Sedláková B, Duchoslav M, Dančák M (2003) Distribution of powdery mildew species on Cucurbitaceaous vegetables in the Czech Republic. Scientific works of the Lithuanian institute of horticulture and Lithuanian university of Agriculture. Hortic Veget Growing 22:31–41

    Google Scholar 

  • Kwon JH, Shen SS, Jee HJ (2008) Occurrence of blue mold on tomato caused by Penicillium oxalicum in Korea. Plant Pathol J 24:87–89

    Article  Google Scholar 

  • Lebeda A (1983) The genera and species spectrum of cucumber powdery mildew in Czechoslovakia. Phytopathol Zeitschrift 108:71–79

    Article  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TC, Ishizaka M, Ishii H (2009) Acibenzolar-S-methyl induced systemic resistance against anthracnose and powdery mildew diseases on cucumber plants without accumulation of phytoalexins. J Phytopathol 157:40–50

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe-plant interactions: principles and mechanisms. Anton Leeuw Int J Gen Mol Microbiol 81:373–383

    Article  CAS  Google Scholar 

  • Manjula K, Podile AR (2005) Production of fungal cell wall degrading enzymes by a biocontrol strain of Bacillus subtilis AF 1. Indian J Exp Biol 43:892–896

    CAS  PubMed  Google Scholar 

  • Manker DC (2005) Natural products as green pesticides. In: Clark JM, Ohkawa H (eds) New discoveries in agrochemicals, ACS symposium series, vol 892, pp 283–294

    Chapter  Google Scholar 

  • Matheron ME, Porchas M (2000) Evaluation of fungicide performance for control of powdery mildew on lettuce in 2000. Online publication no. AZ1177 in: vegetable: College of agriculture report 2000, College of Agriculture, University of Arizona, Tucson, AZ, USA. Available from: https://www.researchgate.net/publication/260386900_Evaluation_of_Fungicide_Performance_for_Control_of_Powdery_Mildew_on_Lettuce_in_2000

  • McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245

    Article  PubMed  Google Scholar 

  • McGrath MT (2017) Powdery mildew of cucurbits. Cooperative extension. Available from: http://vegetablemdonline.ppath.cornell.edu/factsheets/Cucurbits_PM.htm

  • Menzies J, Stan DLE (1996) Effect of inoculum density of Pythium aphanidermatum on the growth and yield of cucumber plants grown in recirculating nutrient film culture. Can J Plant Pathol 18:50–54

    Article  Google Scholar 

  • Merrill L, Dunbar J, Richardson J, Kuske CR (2006) Composition of Bacillus species in aerosols from 11 U.S. cities. J Forensic Sci 51:559–565

    Article  CAS  PubMed  Google Scholar 

  • Mihalache G, Balaes T, Gostin I, Stefan M (2017) Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res 25:29784–29793

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101:1–8

    Article  CAS  PubMed  Google Scholar 

  • Nagorska K, Bikowski M, Obuchowski M (2007) Multicellular behavior and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54:495–508

    Article  CAS  PubMed  Google Scholar 

  • Nakano MM, Zuber P (1998) Anaerobic growth of a “Strict Aerobe” (Bacillus subtilis). Annu Rev Microbiol 52:65–90

    Article  Google Scholar 

  • Nunez-Palenius HG, Hopkins D, Cantliffe DJ (2006) Powdery mildew of cucurbits in Florida. University of Florida. IFAS extension. Available from: http://edis.ifas.ufl.edu

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  CAS  PubMed  Google Scholar 

  • Pavlou GC, Vakalounakis DJ, Ligoxigakis EK (2002) Control of root and stem rot of cucumber, caused by Fusarium oxysporum f. sp. radicis-cucumerinum, by grafting onto resistant rootstocks. Plant Dis 86:379–382

    Article  CAS  PubMed  Google Scholar 

  • Peet MM, Welles G (2005) Greenhouse tomato production. CAB international 2005. Tomatoes (ed. E. Heuvelink). 9, pp 257–304

    Google Scholar 

  • Perez-Garcia A, Romero D, Fernandez-Ortuno D, Lopez-Ruiz F, Vicente A, Tores JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10:153–160

    Article  PubMed  Google Scholar 

  • Pieterse CMJ, León-Reyes A, van der Ent S, Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Punja ZK, Parker M (2000) Development of Fusarium root and stem rot, a new disease on greenhouse cucumber in British Columbia, caused by Fusarium oxysporum f. sp. radicis-cucumerinum. Can J Plant Pathol 22:349–363

    Article  Google Scholar 

  • Punja ZK, Yip R (2003) Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Can J Plant Pathol 25:411–417

    Article  Google Scholar 

  • Punja ZK, Rodriguez G, Tirajoh A (2016) Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Prot 84:98–104

    Article  CAS  Google Scholar 

  • Roberts P, Kucharek T (2005) Florida plant disease management guide: watermelon. Electronic data information source of UF/IFAS extension, PDMG-V3-55. Available from: http://edis.ifas.ufl.edu/

  • Romero D, Pérez-García A, Rivera ME, Cazorla FM, de Vicente A (2004) Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol 64:263–269

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Zeriouh H, Cazorla FM, Fernández-Ortuño D, Torés JA, Pérez-García A (2007a) Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol 56:976–986

    Article  Google Scholar 

  • Romero D, de Vicente A, Olmos JL, Dávila JC, Pérez-García A (2007b) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103:969–976

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007c) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Sabaratnam S (2018) Gummy stem blight of greenhouse cucumber. British Columbia ministry of agriculture. Available from: https://www2.gov.bc.ca/assets/gov/farming-natural-resources-and-industry/agriculture-and-seafood/animal-and-crops/plant-health/phu-gummystemblight-greenhousecucumberss.pdf

  • Saber WI, Ghoneem KM, Al-Askar AA, Rashad YM, Ali AA, Rashad EM (2015) Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol Hung 66:436–448

    Article  CAS  PubMed  Google Scholar 

  • Salmeron J, Vernooij B, Lawton K, Kramer C, Frye C, Osterndorp M (2002) Powdery mildew control through transgenic expression of antifungal proteins, resistance genes and systemic acquired resistance. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The Powdery Mildews. A comprehensive treatise. APS Press, Minnesota, pp 169–199

    Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  PubMed  Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459

    Article  CAS  Google Scholar 

  • Shankar SM (2016) Epidemiology and management of damping-off of tomato (Solanum esculentum L.). Plant pathology department of N.M. college of Agriculture, Navsari Agricultural University. Available from: http://krishikosh.egranth.ac.in/handle/1/5810036276

  • Siripornvisal S (2010) Biocontrol efficacy of Bacillus subtilis BCB3-19 against tomato gray mold. Sci Tech J 10:37–44

    Google Scholar 

  • Soleyman G, Masoud A, Siavash T (2014) Biological control of Alternaria rot of tomato by two bacterial strains, Pseudomonas fluorescens UTPF68, and Bacillus subtilis UTB96. Iranian J Plant Prot Sci 44:299–305

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Utkhede RS, Koch CA (2002) Chemical and biological treatments for control of gummy stem blight of greenhouse cucumbers. Eur J Plant Pathol 108:443–448

    Article  CAS  Google Scholar 

  • Utkhede RS, Koch CA, Menzies JG (1999) Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Can J Plant Pathol 21:265–271

    Article  Google Scholar 

  • Utkhede RS, Levesque CA, Dinh D (2000) Pythium aphanidermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. Can J Plant Pathol 22:138–144

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Wahab S (2009) Biotechnological approaches in the management of plant pests, diseases and weeds for sustainable agriculture. J Biopest 2:115–134

    Google Scholar 

  • Wang Z (2016) Statistical overview of the Canadian greenhouse vegetable industry, 2015. Minister of Agriculture and Agri-Food Canada. Available from: http://www.agr.gc.ca/resources/prod/doc/pdf/1468861362193x-eng.pdf

  • Wang H, Shi Y, Wang D, Yao Z, Wang Y, Liu J, Zhang S, Wang A (2018) A biocontrol strain of Bacillus subtilis WXCDD105 used to control tomato Botrytis cinerea and Cladosporium fulvum and promote the growth of seedlings. Int J Mol Sci 19:1371

    Article  CAS  PubMed Central  Google Scholar 

  • Weller DM (1988) Biocontrol of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Zalte A, Gade RM, Shitole AV, Belkar Y (2013) Management of tomato damping off by using plant growth promoting microorganisms. J Plant Dis Sci 8:200–203

    Google Scholar 

  • Zhang J, Zhang J, Howell CR, Starr JL, Zhang JX (1996) Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci Technol 6:175–187

    Article  Google Scholar 

  • Zitter TA (1992) Gummy Stem Blight. Cooperative extension. New York State. Cornell University. Fact Sheet Page: 730.70. Available from: http://vegetablemdonline.ppath.cornell.edu/factsheets/Cucurbit_GSBlight.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zamir K. Punja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ni, L., Punja, Z.K. (2019). Management of Fungal Diseases on Cucumber (Cucumis sativus L.) and Tomato (Solanum lycopersicum L.) Crops in Greenhouses Using Bacillus subtilis. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_1

Download citation

Publish with us

Policies and ethics