Advertisement

MALT Lymphoma as a Model of Chronic Inflammation-Induced Gastric Tumor Development

  • Lukas Marcelis
  • Thomas Tousseyn
  • Xavier SagaertEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 421)

Abstract

Mucosa-associated lymphoid tissue (MALT) lymphoma, or extranodal marginal zone lymphoma of MALT, is an indolent B-cell non-Hodgkin lymphoma linked with preexisting chronic inflammation. The stomach is the most commonly affected organ and the MALT lymphoma pathogenesis is clearly associated with Helicobacter pylori gastroduodenitis. Inflammation induces the lymphoid infiltrates in extranodal sites, where the lymphoma then subsequently develops. Genetic aberrations arise through the release of reactive oxygen species (ROS), H. pylori-induced endonucleases, and other effects. The involvement of nuclear factor kappa B (NF-κB) pathway activation, a critical regulator of pro-inflammatory responses, further highlights the role of inflammation in gastric MALT lymphoma. The NF-κB pathway regulates key elements of normal lymphocyte function, including the transcription of proliferation-promoting and anti-apoptotic genes. Aberrant constitutive activation of NF-κB signaling can lead to autoimmunity and malignancy. NF-κB pathway activation can happen through both the canonical and non-canonical pathways and can be caused by multiple genetic aberrations such as t(11;18)(q12;q21), t(1;14)(p22;q32), and t(14;18)(q32;q21) translocations, chronic inflammation and even directly by H. pylori-associated mechanisms. Gastric MALT lymphoma is considered one of the best models of how inflammation initiates genetic events that lead to oncogenesis, determines tumor biology, dictates clinical behavior and leads to viable therapeutic targets. The purpose of this review is to present gastric MALT lymphoma as an outstanding example of the close pathogenetic link between chronic inflammation and tumor development and to describe how this information can be integrated into daily clinical practice.

Keywords

Gastric MALT lymphoma Helicobacter pylori Chronic inflammation Lymphomagenesis NF-κB signaling 

Notes

Conflicts of Interest

The authors have no conflicts of interest to declare.

Financial Support

TT holds a Mandate for Fundamental and Translational Research from the “Stichting tegen Kanker” DNA dama2014-083).

LM is a Ph.D. student, financially supported by KULeuven, Department of Imaging and Pathology, “Stefanie’s Rozen fonds”, “Fonds Tom Debackere”, Stichting Me2You’ and “Emmanuel van der Schueren beurs (Kom op tegen Kanker)”.

References

  1. Achuthan R, Bell SM, Leek JP et al (2000) Novel translocation of the BCL10 gene in a case of mucosa associated lymphoid tissue lymphoma. Genes Chromosomes Cancer 29:347–349.  https://doi.org/10.1002/1098-2264(2000)9999:9999%3c:AID-GCC1048%3e3.0.CO;2-BCrossRefPubMedGoogle Scholar
  2. Afonina IS, Elton L, Carpentier I, Beyaert R (2015) MALT1—a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J 282:3286–3297.  https://doi.org/10.1111/febs.13325CrossRefPubMedGoogle Scholar
  3. Alpen B, Neubauer A, Dierlamm J et al (2000) Translocation t(11;18) absent in early gastric marginal zone B-cell lymphoma of MALT type responding to eradication of Helicobacter pylori infection. Blood 95:4014–4015.  https://doi.org/10.1182/blood.V98.1.250CrossRefPubMedGoogle Scholar
  4. Ansell SM, Akasaka T, McPhail E et al (2012) t(X;14)(p 11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood 120:3949–3957.  https://doi.org/10.1182/blood-2011-11-389908CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arribas AJ, Bertoni F (2017) Methylation patterns in marginal zone lymphoma. Best Pract Res Clin Haematol 30:24–31.  https://doi.org/10.1016/j.beha.2016.09.003CrossRefPubMedGoogle Scholar
  6. Asano N, Iijima K, Terai S et al (2012) Eradication therapy is effective for Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma. Tohoku J Exp Med 228:223–227.  https://doi.org/10.1620/tjem.228.223.CorrespondenceCrossRefPubMedGoogle Scholar
  7. Backert S, Feller SM, Wessler S (2008) Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Trends Biochem Sci 33(2):80–90.  https://doi.org/10.1016/j.tibs.2007.10.006CrossRefPubMedGoogle Scholar
  8. Backert S, Naumann M (2010) What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18:479–486.  https://doi.org/10.1016/j.tim.2010.08.003CrossRefPubMedGoogle Scholar
  9. Backert S, Haas R, Gerhard M, Naumann M (2017) The Helicobacter pylori type IV secretion system encoded by the cag Pathogenicity Island: architecture, function, and signaling. Curr Top Microbiol Immunol 413:187–220.  https://doi.org/10.1007/978-3-319-75241-9_8CrossRefPubMedGoogle Scholar
  10. Baens M, Ferreiro JF, Tousseyn T et al (2012) t(X;14)(p 11.4;q32.33) is recurrent in marginal zone lymphoma and up-regulates GPR34. Haematologica 97:184–188.  https://doi.org/10.3324/haematol.2011.052639CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baens M, Fevery S, Sagaert X et al (2006) Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res 66:5270–5277.  https://doi.org/10.1158/0008-5472.CAN-05-4590CrossRefPubMedGoogle Scholar
  12. Baens M, Maes B, Steyls A et al (2000) The product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am J Pathol 156:1433–1439.  https://doi.org/10.1016/S0002-9440(10)65012-2CrossRefPubMedPubMedCentralGoogle Scholar
  13. Banham AH, Beasley N, Campo E et al (2001) The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res 61:8820–8829.  https://doi.org/10.1038/297365a0CrossRefPubMedGoogle Scholar
  14. Banham AH, Connors JM, Brown PJ et al (2005) Expression of the FOXP1 transcription factor is strongly associated with inferior survival in patients with diffuse large B-cell lymphoma. Clin Cancer Res 11:1065–1072PubMedGoogle Scholar
  15. Barrans SL, Fenton JAL, Banham A et al (2004) Strong expression of FOXP1 identifies a distinct subset of diffuse large B-cell lymphoma (DLBCL) patients with poor outcome. Blood 104:2933–2935.  https://doi.org/10.1182/blood-2004-03-1209CrossRefPubMedGoogle Scholar
  16. Barth TFE, Bentz M, Leithuser F et al (2001) Molecular-cytogenetic comparison of mucosa-associated marginal zone B-cell lymphoma and large B-cell lymphoma arising in the gastro-intestinal tract. Genes Chromosom Cancer 31:316–325.  https://doi.org/10.1002/gcc.1150CrossRefPubMedGoogle Scholar
  17. Belair C, Belair C, Darfeuille F et al (2009) Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 15:806–812.  https://doi.org/10.1111/j.1469-0691.2009.02960.xCrossRefPubMedGoogle Scholar
  18. Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25:280–288.  https://doi.org/10.1016/j.it.2004.03.008CrossRefPubMedGoogle Scholar
  19. Bornancin F, Renner F, Touil R et al (2015) Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J Immunol 194:3723–3734.  https://doi.org/10.4049/jimmunol.1402254CrossRefPubMedGoogle Scholar
  20. Brandt S, Kwok T, Hartig R, König W, Backert S (2005) NF-B activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci 102:9300–9305.  https://doi.org/10.1073/pnas.0409873102CrossRefPubMedGoogle Scholar
  21. Cai J, Liu X, Cheng J et al (2012) MicroRNA-200 is commonly repressed in conjunctival MALT lymphoma, and targets cyclin E2. Graefes Arch Clin Exp Ophthalmol 250:523–531.  https://doi.org/10.1007/s00417-011-1885-4CrossRefPubMedGoogle Scholar
  22. Coeuret S, de La Blanchardière A, Saguet-Rysanek V et al (2014) Campylobacter coli cultured from the stools of a patient with immunoproliferative small intestinal disease. Clin Microbiol Infect 20:908–911.  https://doi.org/10.1111/1469-0691.12545CrossRefPubMedGoogle Scholar
  23. Cogliatti SB, Schmid U, Schumacher U et al (1991) Primary B-cell gastric lymphoma: a clinicopathological study of 145 patients. Gastroenterology 101:1159–1170.  https://doi.org/10.1016/0016-5085(91)90063-QCrossRefPubMedGoogle Scholar
  24. Conconi A, Martinelli G, Lopez-Guillermo A et al (2011) Clinical activity of bortezomib in relapsed/refractory MALT lymphomas: results of a phase II study of the international extranodal lymphoma study group (IELSG). Ann Oncol 22:689–695.  https://doi.org/10.1093/annonc/mdq416CrossRefPubMedGoogle Scholar
  25. Cook JR, Müller-Hermelink HK, Isaacson PG et al (2017) Extranodal marginal zone lymphoma of lymphoma of- mucosa-associated lymphoid tissue (MALT) lymphoma. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4t. IARC, Lyon, pp 259–262Google Scholar
  26. Coornaert B, Baens M, Heyninck K et al (2008) T cell antigen receptor stimulation induces MALT1 paracaspase—mediated cleavage of the NF-κB inhibitor A20. Nat Immunol 9:263–271.  https://doi.org/10.1038/ni1561CrossRefPubMedGoogle Scholar
  27. Copie-Bergman C, Gaulard P, Lavergne-Slove A et al (2003) Proposal for a new histological grading system for post-treatment evaluation of gastric MALT lymphoma. Gut 52:1656.  https://doi.org/10.1136/gut.52.11.1655CrossRefPubMedPubMedCentralGoogle Scholar
  28. Coussens LM, Werb Z (2009) Inflammation and cancer. Nature 420:860–867.  https://doi.org/10.1038/nature01322CrossRefGoogle Scholar
  29. Craig VJ, Arnold I, Gerke C et al (2010) Gastric MALT lymphoma B cells express polyreactive, somatically mutated immunoglobulins. Blood 115:581–591.  https://doi.org/10.1182/blood-2009-06-228015CrossRefPubMedGoogle Scholar
  30. De Re V, De Vita S, Marzotto A et al (2000) Sequence analysis of the immunoglobulin antigen receptor of hepatitis C virus-associated non-Hodgkin lymphomas suggests that the malignant cells are derived from the rheumatoid factor-producing cells that occur mainly in type II cryoglobulinemia. Blood 96:3578–3584PubMedGoogle Scholar
  31. Defrancesco I, Arcaini L (2018) Overview on the management of non-gastric MALT lymphomas. Best Pract Res Clin Haematol 31:57–64.  https://doi.org/10.1016/j.beha.2017.11.001CrossRefPubMedGoogle Scholar
  32. Degroote A, Knippenberg L, Vander Borght S et al (2012) Analysis of microsatellite instability in gastric mucosa-associated lymphoid tissue lymphoma. Leuk Lymphoma 8194:1–7.  https://doi.org/10.3109/10428194.2012.723211CrossRefGoogle Scholar
  33. Demeyer A, Staal J, Beyaert R (2016) Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad? Trends Mol Med 22:135–150.  https://doi.org/10.1016/j.molmed.2015.12.004CrossRefPubMedGoogle Scholar
  34. Dierlamm J, Baens M, Wlodarska I et al (1999) The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93:3601–3609PubMedGoogle Scholar
  35. Doglioni C, Wotherspoon AC, Moschini A et al (1992) High incidence of primary gastric lymphoma in northeastern Italy. Lancet (London, England) 339:834–835CrossRefGoogle Scholar
  36. Dong W, Liu Y, Peng J et al (2006) The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-κB from toll-like receptor 4. J Biol Chem 281:26029–26040.  https://doi.org/10.1074/jbc.M513057200CrossRefPubMedGoogle Scholar
  37. Dreyling M, Thieblemont C, Gallamini A et al (2013) Esmo consensus conferences: guidelines on malignant lymphoma. Part 2: marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann Oncol 24:857–877.  https://doi.org/10.1093/annonc/mds643CrossRefPubMedPubMedCentralGoogle Scholar
  38. Du M (2016) MALT lymphoma: a paradigm of NF-κB dysregulation. Semin Cancer Biol 39:49–60.  https://doi.org/10.1016/j.semcancer.2016.07.003CrossRefPubMedGoogle Scholar
  39. Eck M, Schmausser B, Haas R et al (1997) MALT-type lymphoma of the stomach is associated with Helicobacter pylori strains expressing the CagA protein. Gastroenterology 112:1482–1486.  https://doi.org/10.1016/S0016-5085(97)70028-3CrossRefPubMedGoogle Scholar
  40. Fernández C, Bellosillo B, Ferraro M et al (2017) MicroRNAs 142–3p, miR-155 and miR-203 are deregulated in gastric MALT lymphomas compared to chronic gastritis. Cancer Genomics Proteomics 14:75–82.  https://doi.org/10.21873/cgp.20020
  41. Ferreira BI, García JF, Suela J et al (2008) Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica 93:670–679.  https://doi.org/10.3324/haematol.12221CrossRefPubMedGoogle Scholar
  42. Ferreri AJM, Dolcetti R, Magnino S et al (2009) Chlamydial infection: The link with ocular adnexal lymphomas. Nat Rev Clin Oncol 6:658–669.  https://doi.org/10.1038/nrclinonc.2009.147CrossRefPubMedGoogle Scholar
  43. Fischbach W, Dragosics B, Kolve-Goebeler ME et al (2000) Primary gastric B-cell lymphoma: results of a prospective multicenter study. Gastroenterology 119:1191–1202.  https://doi.org/10.1053/gast.2000.19579CrossRefPubMedGoogle Scholar
  44. Fischbach W, Goebeler-Kolve M-E, Dragosics B et al (2004) Long term outcome of patients with gastric marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT) following exclusive Helicobacter pylori eradication therapy: experience from a large prospective series. Gut 53:34–37.  https://doi.org/10.1136/gut.53.1.34CrossRefPubMedPubMedCentralGoogle Scholar
  45. Fischbach W, Goebeler ME, Ruskone-Fourmestraux A et al (2007) Most patients with minimal histological residuals of gastric MALT lymphoma after successful eradication of Helicobacter pylori can be managed safely by a watch and wait strategy: experience from a large international series. Gut 56:1685–1687.  https://doi.org/10.1136/gut.2006.096420CrossRefPubMedPubMedCentralGoogle Scholar
  46. Flossbach L, Holzmann K, Mattfeldt T et al (2013) High-resolution genomic profiling reveals clonal evolution and competition in gastrointestinal marginal zone B-cell lymphoma and its large cell variant. Int J Cancer 132:E117–127.  https://doi.org/10.1002/ijc.27774CrossRefGoogle Scholar
  47. Fukuhara N, Nakamura T, Nakagawa M et al (2007) Chromosomal imbalances are associated with outcome of Helicobacter pylori eradication in t(11;18)(q21;q21) negative gastric mucosa-associated lymphoid tissue lymphomas. Genes Chromosomes Cancer 46:784–790.  https://doi.org/10.1002/gcc.20464CrossRefPubMedGoogle Scholar
  48. Gebauer N, Kuba J, Senft A et al (2014) MicroRNA-150 Is up-regulated in extranodal marginal zone lymphoma of MALT type. Cancer Genomics Proteomics 11:51–56PubMedGoogle Scholar
  49. Gehring T, Seeholzer T, Krappmann D (2018) BCL10—Bridging CARDs to immune activation. Front Immunol 9:1–10.  https://doi.org/10.3389/fimmu.2018.01539CrossRefGoogle Scholar
  50. Goossens T, Klein U, Kuppers R (1998) Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc Natl Acad Sci 95:2463–2468.  https://doi.org/10.1073/pnas.95.5.2463CrossRefPubMedGoogle Scholar
  51. Hailfinger S, Nogai H, Pelzer C et al (2011) Malt1-dependent RelB cleavage promotes canonical NF-B activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci 108:14596–14601.  https://doi.org/10.1073/pnas.1105020108CrossRefPubMedGoogle Scholar
  52. Han SL, Wu XL, Wan L et al (2009) FOXP1 expression predicts polymorphic histology and poor prognosis in gastric mucosa-associated lymphoid tissue lymphomas. Dig Surg 26:156–162.  https://doi.org/10.1159/000212058CrossRefPubMedGoogle Scholar
  53. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282.  https://doi.org/10.1182/blood-2003-05-1545CrossRefPubMedPubMedCentralGoogle Scholar
  54. Haralambieva E, Adam P, Ventura R et al (2006) Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia 20:1300–1333.  https://doi.org/10.1038/sj.leu.2404244CrossRefPubMedGoogle Scholar
  55. Hartung ML, Gruber DC, Koch KN et al (2015) H. pylori-induced DNA strand breaks are introduced by nucleotide excision repair endonucleases and promote NF-κB target gene expression. Cell Rep 13:70–79.  https://doi.org/10.1016/j.celrep.2015.08.074CrossRefPubMedGoogle Scholar
  56. Hellmig S, Bartscht T, Fischbach W et al (2009) Germline variations of the MALT1 gene as risk factors in the development of primary gastric B-cell lymphoma. Eur J Cancer 45:1865–1870.  https://doi.org/10.1016/j.ejca.2009.03.010CrossRefPubMedGoogle Scholar
  57. Hong SS, Jung HY, Choi KD et al (2006) A prospective analysis of low-grade gastric MALT lymphoma after Helicobacter pylori eradication. Helicobacter 11:569–573.  https://doi.org/10.1111/j.1523-5378.2006.00460.xCrossRefPubMedGoogle Scholar
  58. Hosokawa Y, Suzuki H, Nakagawa M et al (2005) API2-MALT1 fusion protein induces transcriptional activation of the API2 gene through NF-κB binding elements: Evidence for a positive feed-back loop pathway resulting in unremitting NF-κB activation. Biochem Biophys Res Commun 334:51–60.  https://doi.org/10.1016/j.bbrc.2005.06.058CrossRefPubMedGoogle Scholar
  59. Hussell T, Isaacson PG, Crabtree JE et al (1993a) Immunoglobulin specificity of low grade B cell gastrointestinal lymphoma of mucosa-associated lymphoid tissue (MALT) type. Am J Pathol 142:285–292PubMedPubMedCentralGoogle Scholar
  60. Hussell T, Isaacson PG, Spencer J, Crabtree JE (1993b) The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 342:571–574.  https://doi.org/10.1016/0140-6736(93)91408-ECrossRefPubMedGoogle Scholar
  61. Jafarzadeh A, Larussa T, Nemati M, Jalapour S (2018) T cell subsets play an important role in the determination of the clinical outcome of Helicobacter pylori infection. Microb Pathog 116:227–236.  https://doi.org/10.1016/j.micpath.2018.01.040CrossRefPubMedGoogle Scholar
  62. Jäger G, Neumeister P, Brezinschek R et al (2002) Treatment of extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue type with cladribine: a phase II study. J Clin Oncol 20:3872–3877.  https://doi.org/10.1200/JCO.2002.05.117CrossRefPubMedGoogle Scholar
  63. Jiang J, Eun JL, Schmittgen TD (2006) Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosom Cancer 45:103–106.  https://doi.org/10.1002/gcc.20264CrossRefPubMedGoogle Scholar
  64. Kalla J, Stilgenbauer S, Schaffner C et al (2000) Heterogeneity of the API2-MALT1 gene rearrangement in MALT-type lymphoma. Leukemia 14:1967–1974.  https://doi.org/10.1038/sj.leu.2401918CrossRefPubMedGoogle Scholar
  65. Kaparakis M, Laurie KL, Wijburg O et al (2006) CD4+ CD25+ regulatory T cells modulate the T-cell and antibody responses in Helicobacter-Infected BALB/c mice. Infect Immun 74:3519–3529.  https://doi.org/10.1128/IAI.01314-05CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kiesewetter B, Troch M, Dolak W et al (2013) A phase II study of lenalidomide in patients with extranodal marginal zone B-cell lymphoma of the mucosa associated lymphoid tissue (MALT lymphoma). Haematologica 98:353–356.  https://doi.org/10.3324/haematol.2012.065995CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kirchhofer D, Vucic D (2012) Protease activity of MALT1: a mystery unravelled. Biochem J 444:e3–e5.  https://doi.org/10.1042/BJ20120414CrossRefPubMedGoogle Scholar
  68. Koch P, del Valle F, Berdel WE et al (2001) Primary gastrointestinal non-Hodgkin’s lymphoma: II. Combined surgical and conservative or conservative management only in localized gastric lymphoma–results of the prospective German Multicenter Study GIT NHL 01/92. J Clin Oncol 19:3874–3883.  https://doi.org/10.1200/JCO.2001.19.18.3874CrossRefPubMedGoogle Scholar
  69. Koch P, Probst A, Berdel WE et al (2005) Treatment results in localized primary gastric lymphoma: data of patients registered within the German multicenter study (GIT NHL 02/96). J Clin Oncol 23:7050–7059.  https://doi.org/10.1200/JCO.2005.04.031CrossRefPubMedGoogle Scholar
  70. Kondo T, Oka T, Sato H et al (2009) Accumulation of aberrant CpG hypermethylation by Helicobacter pylori infection promotes development and progression of gastric MALT lymphoma. Int J Oncol 35:547–557.  https://doi.org/10.3892/ijoCrossRefPubMedGoogle Scholar
  71. Krappmann D, Vincendeau M (2016) Mechanisms of NF-κB deregulation in lymphoid malignancies. Semin Cancer Biol 39:3–14.  https://doi.org/10.1016/j.semcancer.2016.05.002CrossRefPubMedGoogle Scholar
  72. Kuo S-H, Chen L-T, Lin C-W et al (2013) Detection of the Helicobacter pylori CagA protein in gastric mucosa-associated lymphoid tissue lymphoma cells: clinical and biological significance. Blood Cancer J 3:e125.  https://doi.org/10.1038/bcj.2013.22CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kwee I, Rancoita PMV, Rinaldi A et al (2011) Genomic profiles of MALT lymphomas: variability across anatomical sites. Haematologica 96:1064–1066.  https://doi.org/10.3324/haematol.2011.040402CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lecuit M, Abachin E, Martin A et al (2004) Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 350:239–248.  https://doi.org/10.1056/NEJMoa031887CrossRefPubMedGoogle Scholar
  75. Lévy M, Copie-Bergman C, Amiot A et al (2013) Rituximab and chlorambucil versus rituximab alone in gastric mucosa-associated lymphoid tissue lymphoma according to t(11;18) status: a monocentric non-randomized observational study. Leuk Lymphoma 54:940–944.  https://doi.org/10.3109/10428194.2012.729832CrossRefPubMedGoogle Scholar
  76. Li Q, Verma IM (2002) NF-κB regulation in the immune system. Nat Rev Immunol 2:725–734.  https://doi.org/10.1038/nri910CrossRefPubMedGoogle Scholar
  77. Lim MCC, Maubach G, Sokolova O, Feige MH, Diezko R, Buchbinder J, Backert S, Schlüter D, Lavrik IN, Naumann M (2017) Pathogen-induced ubiquitin-editing enzyme A20 bifunctionally shuts off NF-κB and caspase-8-dependent apoptotic cell death. Cell Death Differ 24:1621–1631.  https://doi.org/10.1038/cdd.2017.89CrossRefPubMedPubMedCentralGoogle Scholar
  78. Lin W-C, Tsai H-F, Kuo S-H et al (2010) Translocation of Helicobacter pylori CagA into Human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res 70:5740–5748.  https://doi.org/10.1158/0008-5472.CAN-09-4690CrossRefPubMedGoogle Scholar
  79. Liu H, Ruskon-Fourmestraux A, Lavergne-Slove A et al (2001a) Resistance of t(11;18) positive gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancet (London, England) 357:39–40.  https://doi.org/10.1016/S0140-6736(00)03571-6CrossRefGoogle Scholar
  80. Liu H, Ye H, Dogan A et al (2001b) T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood 98:1182–1187CrossRefGoogle Scholar
  81. Lucas PC, Kuffa P, Gu S et al (2007) A dual role for the API2 moiety in API2-MALT1-dependent NF-κB activation: heterotypic oligomerization and TRAF2 recruitment. Oncogene 26:5643–5654.  https://doi.org/10.1038/sj.onc.1210342CrossRefPubMedGoogle Scholar
  82. Lucas PC, Yonezumi M, Inohara N et al (2001) Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 276:19012–19019.  https://doi.org/10.1074/jbc.M009984200CrossRefPubMedGoogle Scholar
  83. Martin F, Kearney JF (2002) Marginal-zone B cells. Nat Rev Immunol 2:323–335.  https://doi.org/10.1038/nri799CrossRefPubMedGoogle Scholar
  84. McKinnon ML, Rozmus J, Fung SY et al (2014) Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol 133(5):1458–1462.  https://doi.org/10.1016/j.jaci.2013.10.045CrossRefPubMedGoogle Scholar
  85. Min KO, Seo EJ, Kwon HJ et al (2006) Methylation of p16(INK4A) and p57(KIP2) are involved in the development and progression of gastric MALT lymphomas. Mod Pathol 19:141–148.  https://doi.org/10.1038/modpathol.3800505CrossRefPubMedGoogle Scholar
  86. Moleiro J, Ferreira S, Lage P, Dias Pereira A (2016) Gastric malt lymphoma: Analysis of a series of consecutive patients over 20 years. United Eur Gastroenterol J 4:395–402.  https://doi.org/10.1177/2050640615612934CrossRefGoogle Scholar
  87. Morgner A, Lehn N, Andersen LP et al (2000) Helicobacter heilmannii—associated primary gastric low-grade. Gastroenterology 5:821–828.  https://doi.org/10.1053/gg.2000.7032
  88. Motegi M, Yonezumi M, Suzuki H et al (2000) API2-MALT1 chimeric transcripts involved in mucosa-associated lymphoid tissue type lymphoma predict heterogeneous products. Am J Pathol 156:807–812.  https://doi.org/10.1016/S0002-9440(10)64948-6CrossRefPubMedPubMedCentralGoogle Scholar
  89. Müller-Hermelink HK (2003) Genetic and molecular genetic studies in the diagnosis of B-cell lymphomas: marginal zone lymphomas. Hum Pathol 34:336–340.  https://doi.org/10.1053/hupa.2003.98CrossRefPubMedGoogle Scholar
  90. Nakagawa M, Hosokawa Y, Yonezumi M et al (2005) MALT1 contains nuclear export signals and regulates cytoplasmic localization of BCL10. Blood 106:4210–4216.  https://doi.org/10.1182/blood-2004-12-4785CrossRefPubMedGoogle Scholar
  91. Naumann M, Sokolova O, Tegtmeyer N, Backert S (2017) Helicobacter pylori: a paradigm pathogen for subverting host cell signal transmission. Trends Microbiol 25:316–328.  https://doi.org/10.1016/j.tim.2016.12.004CrossRefPubMedGoogle Scholar
  92. Nie Z, Du MQ, McAllister-Lucas LM et al (2015) Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma. Nat Commun 6:1–13.  https://doi.org/10.1038/ncomms6908CrossRefGoogle Scholar
  93. O’Rourke JL (2008) Gene expression profiling in Helicobacter-induced MALT lymphoma with reference to antigen drive and protective immunization. J Gastroenterol Hepatol 23:151–156.  https://doi.org/10.1111/j.1440-1746.2008.05553.xCrossRefGoogle Scholar
  94. Ohkubo Y, Saito Y, Ushijima H et al (2017) Radiotherapy for localized gastric mucosa-associated lymphoid tissue lymphoma: Long-term outcomes over 10 years. J Radiat Res 58:537–542.  https://doi.org/10.1093/jrr/rrw044CrossRefPubMedPubMedCentralGoogle Scholar
  95. Ohmae T, Hirata Y, Maeda S et al (2005) Helicobacter pylori activates NF-kappaB via the alternative pathway in B lymphocytes. J Immunol 175:7162–7169.  https://doi.org/10.4049/jimmunol.175.11.7162CrossRefPubMedGoogle Scholar
  96. Packham G (2008) The role of NF-κB in lymphoid malignancies. Br J Haematol 143:3–15.  https://doi.org/10.1111/j.1365-2141.2008.07284.xCrossRefPubMedGoogle Scholar
  97. Parsonnet J, Hansen S, Rodriguez L et al (1994) Helicobacter pylori infection and gastric lymphoma. N Engl J Med 330:1267–1271.  https://doi.org/10.1056/NEJM199405053301803CrossRefPubMedGoogle Scholar
  98. Petrakis G, Kostopoulos I, Venizelos I et al (2017) Expression of the activation markers Blimp1, Foxp1 and pStat3 in extranodal diffuse large B-cell lymphomas. Histol Histopathol 32:825–834.  https://doi.org/10.14670/HH-11-852
  99. Pillai S, Cariappa A, Moran ST (2005) Marginal zone B cells. Annu Rev Immunol 23:161–196.  https://doi.org/10.1146/annurev.immunol.23.021704.115728CrossRefPubMedGoogle Scholar
  100. Pomerantz JL, Baltimore D (2002) Two pathways to NF-kappa B. Mol Cell 10:693–695CrossRefGoogle Scholar
  101. Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77.  https://doi.org/10.1186/1478-811X-11-77CrossRefPubMedPubMedCentralGoogle Scholar
  102. Qiao Q, Yang C, Zheng C et al (2013) Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell 51:766–779.  https://doi.org/10.1016/j.molcel.2013.08.032CrossRefPubMedPubMedCentralGoogle Scholar
  103. Radaszkiewicz T, Dragosics B, Bauer P (1992) Gastrointestinal malignant lymphomas of the mucosa-associated lymphoid tissue: factors relevant to prognosis. Gastroenterology 102:1628–1638.  https://doi.org/10.1016/0016-5085(92)91723-HCrossRefPubMedGoogle Scholar
  104. Raderer M, Streubel B, Woehrer S et al (2005) High relapse rate in patients with MALT lymphoma warrants lifelong follow-up. Clin Cancer Res 11:3349–3352.  https://doi.org/10.1158/1078-0432.CCR-04-2282CrossRefPubMedGoogle Scholar
  105. Raderer M, Wöhrer S, Kiesewetter B et al (2015) Antibiotic treatment as sole management of Helicobacter pylori-negative gastric MALT lymphoma: a single center experience with prolonged follow-up. Ann Hematol 94:969–973.  https://doi.org/10.1007/s00277-014-2298-3CrossRefPubMedGoogle Scholar
  106. Rawlings DJ, Sommer K, Moreno-García ME (2006) The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 6:799–812.  https://doi.org/10.1038/nri1944CrossRefPubMedGoogle Scholar
  107. Rebeaud F, Hailfinger S, Posevitz-Fejfar A et al (2008) The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 9:272–281.  https://doi.org/10.1038/ni1568CrossRefPubMedGoogle Scholar
  108. Remstein ED, James CD, Kurtine PJ (2000) Incidence and subtype specificity of API2-MALT1 fusion translocations in extranodal, nodal, and splenic marginal zone lymphomas. Am J Pathol 156:1183–1188.  https://doi.org/10.1016/S0002-9440(10)64988-7CrossRefPubMedPubMedCentralGoogle Scholar
  109. Remstein ED, Kurtin PJ, Einerson RR et al (2004) Primary pulmonary MALT lymphomas show frequent and heterogeneous cytogenetic abnormalities, including aneuploidy and translocations involving API2 and MALT1 and IGH and MALT1. Leukemia 18:156–160.  https://doi.org/10.1038/sj.leu.2403185CrossRefPubMedGoogle Scholar
  110. Roehle A, Hoefig KP, Repsilber D et al (2008) MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol 142:732–744.  https://doi.org/10.1111/j.1365-2141.2008.07237.xCrossRefPubMedGoogle Scholar
  111. Roggero E, Zucca E, Mainetti C, Bertoni F (2000) Eradication of Borrelia burgdorferi infection in primary marginal zone B-cell lymphoma of the skin. Hum Pathol 31:263–268CrossRefGoogle Scholar
  112. Rosebeck S, Madden L, Jin X et al (2011a) Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 331:468–472.  https://doi.org/10.1126/science.1198946CrossRefPubMedPubMedCentralGoogle Scholar
  113. Rosebeck S, Rehman AO, Lucas PC, McAllister-Lucas LM (2011b) From MALT lymphoma to the CBM signalosome: three decades of discovery. Cell Cycle 10:2485–2496.  https://doi.org/10.4161/cc.10.15.16923CrossRefPubMedPubMedCentralGoogle Scholar
  114. Roy N, Deveraux QL, Takahashi R et al (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914–6925.  https://doi.org/10.1093/emboj/16.23.6914CrossRefPubMedPubMedCentralGoogle Scholar
  115. Ruefli-Brasse AA (2003) Regulation of NF-B-dependent lymphocyte activation and development by paracaspase. Science (80-) 302:1581–1584.  https://doi.org/10.1126/science.1090769
  116. Ruland J, Duncan GS, Elia A et al (2001) Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104:33–42.  https://doi.org/10.1016/S0092-8674(01)00189-1CrossRefPubMedGoogle Scholar
  117. Ruland J, Duncan GS, Wakeham A, Mak TW (2003) Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19:749–758.  https://doi.org/10.1016/S1074-7613(03)00293-0CrossRefPubMedGoogle Scholar
  118. Ruskoné-Fourmestraux A, Matysiak-Budnik T, Fabiani B et al (2015) Exclusive moderate-dose radiotherapy in gastric marginal zone B-cell MALT lymphoma: results of a prospective study with a long term follow-up. Radiother Oncol 117:178–182.  https://doi.org/10.1016/j.radonc.2015.08.029CrossRefPubMedGoogle Scholar
  119. Sagaert X, De Paepe P, Libbrecht L et al (2006a) Forkhead box protein P1 expression in mucosa-associated lymphoid tissue lymphomas predicts poor prognosis and transformation to diffuse large B-cell lymphoma. J Clin Oncol 24:2490–2497.  https://doi.org/10.1200/JCO.2006.05.6150CrossRefPubMedGoogle Scholar
  120. Sagaert X, Laurent M, Baens M et al (2006b) MALT1 and BCL10 aberrations in MALT lymphomas and their effect on the expression of BCL10 in the tumour cells. Mod Pathol 19:225–232.  https://doi.org/10.1038/modpathol.3800523CrossRefPubMedGoogle Scholar
  121. Sagaert X, Tousseyn T, Vanhentenrijk V et al (2010a) Comparative expressed sequence hybridization studies of t(11;18)(q21;q21)-positive and-negative gastric MALT lymphomas reveal both unique and overlapping gene programs. Mod Pathol 23:458–469.  https://doi.org/10.1038/modpathol.2009.182CrossRefPubMedGoogle Scholar
  122. Sagaert X, Van Cutsem E, De Hertogh G et al (2010b) Gastric MALT lymphoma: a model of chronic inflammation-induced tumor development. Nat Rev Gastroenterol Hepatol 7:336–346.  https://doi.org/10.1038/nrgastro.2010.58CrossRefPubMedGoogle Scholar
  123. Saito Y, Suzuki H, Tsugawa H et al (2012) Overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS ONE 7:e47396.  https://doi.org/10.1371/journal.pone.0047396CrossRefPubMedPubMedCentralGoogle Scholar
  124. Schreuder MI, van den Brand M, Hebeda KM et al (2017) Novel developments in the pathogenesis and diagnosis of extranodal marginal zone lymphoma. J Hematop 10:91–107.  https://doi.org/10.1007/s12308-017-0302-2CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716CrossRefGoogle Scholar
  126. Siebenlist U, Brown K, Claudio E (2005) Control of lymphocyte development by nuclear factor-κB. Nat Rev Immunol 5:435–445.  https://doi.org/10.1038/nri1629CrossRefPubMedGoogle Scholar
  127. Sinn DH, Kim YH, Lee EJ et al (2009) Methylation and API2/MALT1 fusion in colorectal extranodal marginal zone lymphoma. Mod Pathol 22:314–320.  https://doi.org/10.1038/modpathol.2008.194CrossRefPubMedGoogle Scholar
  128. Staal J, Driege Y, Bekaert T et al (2011) T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30:1742–1752.  https://doi.org/10.1038/emboj.2011.85CrossRefPubMedPubMedCentralGoogle Scholar
  129. Starostik P, Patzner J, Greiner A et al (2002) Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood 99:3–9.  https://doi.org/10.1182/blood.V99.1.3CrossRefPubMedGoogle Scholar
  130. Stathis A, Chini C, Bertoni F et al (2009) Long-term outcome following Helicobacter pylori eradication in a retrospective study of 105 patients with localized gastric marginal zone B-cell lymphoma of MALT type. Ann Oncol 20:1086–1093.  https://doi.org/10.1093/annonc/mdn760CrossRefPubMedGoogle Scholar
  131. Stefanovic A, Lossos IS (2009) Extranodal marginal zone lymphoma of the ocular adnexa. Blood 114:501–510.  https://doi.org/10.1182/blood-2008-12-195453CrossRefPubMedPubMedCentralGoogle Scholar
  132. Streubel B, Lamprecht A, Dierlamm J et al (2003) T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 101:2335–2339.  https://doi.org/10.1182/blood-2002-09-2963CrossRefPubMedGoogle Scholar
  133. Streubel B, Vinatzer U, Lamprecht A et al (2005) T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia 19:652–658.  https://doi.org/10.1038/sj.leu.2403644CrossRefPubMedGoogle Scholar
  134. Sugiyama T, Asaka M, Nakamura T et al (2001) API2-MALT1 chimeric transcript is a predictive marker for the responsiveness of H. pylori eradication treatment in low-grade gastric MALT lymphoma [1] (multiple letters). Gastroenterology 120:1884–1885.  https://doi.org/10.1053/gast.2001.25305CrossRefPubMedGoogle Scholar
  135. Sun L, Deng L, Ea CK et al (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14:289–301.  https://doi.org/10.1016/S1097-2765(04)00236-9CrossRefPubMedGoogle Scholar
  136. Swerdlow SH, Campo E, Harris NL et al (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edn, Revised 4t. World Health OrganizationGoogle Scholar
  137. Tegtmeyer N, Neddermann M, Asche CI, Backert S (2017) Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol Microbiol 105:358–372.  https://doi.org/10.1111/mmi.13707CrossRefPubMedGoogle Scholar
  138. Thieblemont C, Bastion Y, Berger F et al (1997) Mucosa-associated lymphoid tissue gastrointestinal and nongastrointestinal lymphoma behavior: analysis of 108 patients. J Clin Oncol 15:1624–1630.  https://doi.org/10.1200/JCO.1997.15.4.1624CrossRefPubMedGoogle Scholar
  139. Thieblemont C, Berger F, Dumontet C et al (2000) Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood 95:802–806PubMedGoogle Scholar
  140. Thieblemont C, Cascione L, Conconi A et al (2017) A MALT lymphoma prognostic index. Blood 130:1409–1417.  https://doi.org/10.1182/blood-2017-03-771915CrossRefPubMedGoogle Scholar
  141. Thieblemont C, Mayer A, Dumontet C et al (2002) Primary thyroid lymphoma is a heterogeneous disease. J Clin Endocrinol Metab 87:105–111.  https://doi.org/10.1210/jcem.87.1.8156CrossRefPubMedGoogle Scholar
  142. Thome M (2004) CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 4:348–359.  https://doi.org/10.1038/nri1352CrossRefPubMedGoogle Scholar
  143. Thome M, Charton JE, Pelzer C, Hailfinger S (2010) Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol 2.  https://doi.org/10.1101/cshperspect.a003004
  144. Thorns C, Kuba J, Bernard V et al (2012) Deregulation of a distinct set of microRNAs is associated with transformation of gastritis into MALT lymphoma. Virchows Arch 460:371–377.  https://doi.org/10.1007/s00428-012-1215-1CrossRefPubMedGoogle Scholar
  145. Toracchio S, Ota H, de Jong D et al (2009) Translocation t(11;18)(q21;q21) in gastric B-cell lymphomas. Cancer Sci 100:881–887.  https://doi.org/10.1111/j.1349-7006.2009.01128.xCrossRefPubMedGoogle Scholar
  146. Troch M, Jonak C, Müllauer L et al (2009) A phase II study of bortezomib in patients with MALT lymphoma. Haematologica 94:738–742.  https://doi.org/10.3324/haematol.2008.001537CrossRefPubMedPubMedCentralGoogle Scholar
  147. Turvey SE, Durandy A, Fischer A et al (2014) The CARD11-BCL10-MALT1 (CBM) signalosome complex: stepping into the limelight of human primary immunodeficiency. J Allergy Clin Immunol 134:276–284.  https://doi.org/10.1016/j.jaci.2014.06.015CrossRefPubMedPubMedCentralGoogle Scholar
  148. Tusche MW, Ward LA, Vu F et al (2009) Differential requirement of MALT1 for BAFF-induced outcomes in B cell subsets. J Exp Med 206:2671–2683.  https://doi.org/10.1084/jem.20091802CrossRefPubMedPubMedCentralGoogle Scholar
  149. Uren AG, O’Rourke K, Aravind L et al (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967.  https://doi.org/10.1016/S1097-2765(00)00094-0CrossRefPubMedGoogle Scholar
  150. van Keimpema M, Gruneberg LJ, Mokry M et al (2014) FOXP1 directly represses transcription of proapoptotic genes and cooperates with NF-B to promote survival of human B cells. Blood 124:3431–3440.  https://doi.org/10.1182/blood-2014-01-553412CrossRefPubMedPubMedCentralGoogle Scholar
  151. van Keimpema M, Grüneberg LJ, Mokry M et al (2015) The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood 126:2098–2109.  https://doi.org/10.1182/blood-2015-02-626176CrossRefPubMedPubMedCentralGoogle Scholar
  152. Vinatzer U, Gollinger M, Müllauer L et al (2008) Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res 14:6426–6431.  https://doi.org/10.1158/1078-0432.CCR-08-0702CrossRefPubMedGoogle Scholar
  153. Watanabe K, Murakami K, Sato R et al (2004) CTLA-4 blockade inhibits induction of Helicobacter pylori-associated. Clin Exp Immunol 135(1):29–34.  https://doi.org/10.1046/j.1365-2249.2004.02338.xCrossRefPubMedPubMedCentralGoogle Scholar
  154. Willis TG, Jadayel DM, Du MQ et al (1999) Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96:35–45.  https://doi.org/10.1016/S0092-8674(00)80957-5CrossRefPubMedPubMedCentralGoogle Scholar
  155. Wlodarska I, Veyt E, De Paepe P et al (2005) FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19:1299–1305.  https://doi.org/10.1038/sj.leu.2403813CrossRefPubMedGoogle Scholar
  156. Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG (1991) Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet (London, England) 338:1175–1176CrossRefGoogle Scholar
  157. Wündisch T, Thiede C, Morgner A et al (2005) Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol 23:8018–8024.  https://doi.org/10.1200/JCO.2005.02.3903CrossRefPubMedGoogle Scholar
  158. Xiao C, Calado DP, Galler G et al (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159.  https://doi.org/10.1016/j.cell.2007.07.021CrossRefPubMedPubMedCentralGoogle Scholar
  159. Ye H, Dogan A, Karran L et al (2000) BCL 10 expression in normal and neoplastic lymphoid tissue: nuclear localization in MALT lymphoma. Am J Pathol 157:1147–1154.  https://doi.org/10.1016/S0002-9440(10)64630-5CrossRefPubMedPubMedCentralGoogle Scholar
  160. Ye H, Gong L, Liu H et al (2005) MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol 205:293–301.  https://doi.org/10.1002/path.1715CrossRefPubMedGoogle Scholar
  161. Ye H, Liu H, Attygalle A et al (2003) Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood 102:1012–1018.  https://doi.org/10.1182/blood-2002-11-3502CrossRefPubMedGoogle Scholar
  162. Yu L, Li L, Medeiros LJ, Young KH (2017) NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev 31:77–92.  https://doi.org/10.1016/j.blre.2016.10.001CrossRefGoogle Scholar
  163. Yu M, Chen Y, He Y et al (2012) Critical role of B cell lymphoma 10 in BAFF-regulated NF-κB activation and survival of anergic B cells. J Immunol 189:5185–5193.  https://doi.org/10.4049/jimmunol.1102952CrossRefPubMedPubMedCentralGoogle Scholar
  164. Zhai L, Zhao Y, Ye S et al (2011) Expression of PIK3CA and FOXP1 in gastric and intestinal non-Hodgkin’s lymphoma of mucosa-associated lymphoid tissue type. Tumor Biol 32:913–920.  https://doi.org/10.1007/s13277-011-0192-3CrossRefGoogle Scholar
  165. Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell 168:37–57.  https://doi.org/10.1016/j.cell.2016.12.012CrossRefPubMedPubMedCentralGoogle Scholar
  166. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015) A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interaction. PloS Pathog 11:e1004621.  https://doi.org/10.1371/journal.ppat.1004621CrossRefPubMedPubMedCentralGoogle Scholar
  167. Zhou H, Du MQ, Dixit VM (2005) Constitutive NF-κB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7:425–431.  https://doi.org/10.1016/j.ccr.2005.04.012CrossRefPubMedGoogle Scholar
  168. Zhou Y, Ye H, Martin-Subero JI et al (2006) Distinct comparative genomic hybridisation profiles in gastric mucosa-associated lymphoid tissue lymphomas with and without t(11;18)(q21;q21). Br J Haematol 133:35–42.  https://doi.org/10.1111/j.1365-2141.2006.05969.xCrossRefPubMedGoogle Scholar
  169. Zucca E, Conconi A, Pedrinis E et al (2003) Nongastric marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Arbor Cienc Pensam Y Cult 101:2489–2495.  https://doi.org/10.1182/blood-2002-04-1279.SupportedCrossRefGoogle Scholar
  170. Zucca E, Copie-Bergman C, Ricardi U et al (2013) Gastric marginal zone lymphoma of MALT type: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24:145–148.  https://doi.org/10.1093/annonc/mdt343CrossRefGoogle Scholar
  171. Zucca E, Roggero E, Maggi-Solcà N, Conconi A (2000) Prevalence of Helicobacter pylori and hepatitis C virus infections among non-Hodgkin’s lymphoma patients in Southern Switzerland. Haematologica 85:147–153PubMedGoogle Scholar
  172. Zullo A, Hassan C, Cristofari F et al (2010) Effects of helicobacter pylori eradication on early stage gastric mucosa-associated lymphoid tissue lymphoma. Clin Gastroenterol Hepatol 8:105–110.  https://doi.org/10.1016/j.cgh.2009.07.017CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lukas Marcelis
    • 1
    • 3
  • Thomas Tousseyn
    • 1
    • 2
    • 3
  • Xavier Sagaert
    • 1
    • 2
    • 3
    Email author
  1. 1.Translational Cell and Tissue Research Lab, Department of Imaging and PathologyKU LeuvenLouvainBelgium
  2. 2.Department of PathologyUZ Leuven, University HospitalsLouvainBelgium
  3. 3.LouvainBelgium

Personalised recommendations