Skip to main content

Impact of the Gastrointestinal Microbiome in Health and Disease: Co-evolution with the Host Immune System

  • Chapter
  • First Online:
Molecular Mechanisms of Inflammation: Induction, Resolution and Escape by Helicobacter pylori

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 421))

Abstract

Microbes within the gastrointestinal tract communicate with each other and with the host, which has profound effects on health and disease development. Only now, it is becoming apparent that how and when we acquire our own unique collection of “gut microbes” and also how we choose to maintain them is fundamental to our health. Helicobacter pylori is the most common bacterial infection worldwide, colonizing around half of the world’s population, and is the major risk factor for gastric adenocarcinoma. More recently, it has also been shown to have some beneficial effects in terms of protecting against the development of other diseases. Here, we review the current knowledge on how H. pylori has shaped gastrointestinal microbiota colonization and the host immune system with specific focus on the impact of H. pylori on the various microbiome niches of the gastrointestinal tract. We discuss how the presence of H. pylori influences the physiology of three major regions within the gastrointestinal tract—specifically the oesophagus, stomach and colon. We pay particular attention to the role of H. pylori under chronic inflammatory conditions including the development of cancer. With increased incidence of diseases such as eosinophilic oesophagitis, oesophageal adenocarcinoma and squamous cell carcinoma being attributed to the decline in H. pylori, their disease pathogenesis in light of changing H. pylori colonization is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836

    Article  Google Scholar 

  • Arnold IC et al (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory t cells. J Clin Invest 121:3088–3093

    Article  CAS  Google Scholar 

  • Arrieta MC et al (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152

    Google Scholar 

  • Atherton JC, Blaser MJ (2009) Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 119:2475–2487

    Article  CAS  Google Scholar 

  • Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R, Mantilla A, Torres J (2014) Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci Rep 4:4202

    Article  Google Scholar 

  • Backhed F et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703

    Article  Google Scholar 

  • Benitez AJ et al (2015) Inflammation-associated microbiota in pediatric eosinophilic esophagitis. Microbiome 3:23

    Article  Google Scholar 

  • Bhat S et al (2011) Risk of malignant progression in barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst 103:1049–1057

    Article  Google Scholar 

  • Bik EM et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A 103:732–737

    Article  CAS  Google Scholar 

  • Blackett KL et al (2013) Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, barrett’s and oesophageal carcinoma: association or causality? Aliment Pharmacol Ther 37:1084–1092

    Article  CAS  Google Scholar 

  • Brawner KM et al (2017) Helicobacter pylori infection is associated with an altered gastric microbiota in children. Mucosal Immunol 10:1169–1177

    Article  CAS  Google Scholar 

  • Castaño-Rodríguez N, Goh KL, Fock KM, Mitchell HM, Kaakoush NO (2017a) Dysbiosis of the microbiome in gastric carcinogenesis. Sci Rep 7:15957

    Article  Google Scholar 

  • Castaño-Rodríguez N, Kaakoush NO, Lee WS, Mitchell HM (2017b) Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut 66:235–249

    Article  Google Scholar 

  • Chen Y, Blaser MJ (2008) Helicobacter pylori colonization is inversely associated with childhood asthma. J Infect Dis 198:553–560

    Article  Google Scholar 

  • Chernikova DA et al (2018) The premature infant gut microbiome during the first 6 weeks of life differs based on gestational maturity at birth. Pediatr Res. https://doi.org/10.1038/s41390-018-0022-z

  • Coker OO et al (2018) Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67:1024–1032

    Article  CAS  Google Scholar 

  • Cook MB, Chow WH, Devesa SS (2009) Oesophageal cancer incidence in the United States by race, sex, and histologic type, 1977–2005. Br J Cancer 101:855–859

    Article  CAS  Google Scholar 

  • Corley DA et al (2008) Helicobacter pylori infection and the risk of barrett’s oesophagus: a community-based study. Gut 57:727–733

    Article  CAS  Google Scholar 

  • De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696

    Article  Google Scholar 

  • Dellon ES, Hirano (2018) Epidemiology and natural history of eosinophilic esophagitis. Gastroenterology 154:319–332

    Article  Google Scholar 

  • Den Hollander WJ et al (2015) Intergenerational reduction in Helicobacter pylori prevalence is similar between different ethnic groups living in a western city. Gut 64:1200–1208

    Article  Google Scholar 

  • Dicksved J, LindberG M, Rosenquist M, Enroth H, Jansson JK, Engstrand L (2009) Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol 58:509–516

    Article  CAS  Google Scholar 

  • Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    Article  Google Scholar 

  • Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  Google Scholar 

  • Elliott DE, Urban JJ, Argo CK, Weinstock JV (2000) Does the failure to acquire helminthic parasites predispose to Crohn’s disease? Faseb J 14:1848–1855

    Article  CAS  Google Scholar 

  • Elliott DRF, Walker AW, O’Donovan M, Parkhill J, Fitzgerald RC (2017) A non-endoscopic device to sample the oesophageal microbiota: a case-control study. Lancet Gastroenterol Hepatol 2:32–42

    Article  Google Scholar 

  • El-omar E et al (1994) Low prevalence of helicobacter pylori in inflammatory bowel disease: association with sulphasalazine. Gut 35:1385–1388

    Article  CAS  Google Scholar 

  • Ferreira RM et al (2018) Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 67:226–236

    Article  CAS  Google Scholar 

  • Gao JJ et al (2018) Association between gut microbiota and Helicobacter pylori-related gastric lesions in a high-risk population of gastric cancer. Front Cell Infect Microbiol 8:202

    Article  Google Scholar 

  • Ge Z et al (2018) Helicobacter pylori-infected C57BL/6 mice with different gastrointestinal microbiota have contrasting gastric pathology, microbial and host immune responses. Sci Rep. 8(1):8014

    Article  Google Scholar 

  • Graham DY (1997) The only good Helicobacter pylori is a dead Helicobacter pylori. Lancet 350:70–71

    Article  CAS  Google Scholar 

  • Hansen R, Thomson JM, Fox JG, El-Omar EM, Hold GL (2011) Could Helicobacter organisms cause inflammatory bowel disease? FEMS Immunol Med Microbiol 61:1–14

    Article  CAS  Google Scholar 

  • Hansen R et al (2015) First-pass meconium samples from healthy term vaginally-delivered neonates: an analysis of the microbiota. PLoS ONE 10:e0133320

    Article  Google Scholar 

  • Harris JK et al (2015) Esophageal microbiome in eosinophilic esophagitis. PLoS ONE 10:e0128346

    Article  Google Scholar 

  • Higgins PD et al (2011) Prior Helicobacter pylori infection ameliorates Salmonella typhimurium-induced colitis: mucosal crosstalk between stomach and distal intestine. Inflamm Bowel Dis 17:1398–1408

    Article  Google Scholar 

  • HomaN M, Orel R (2015) Are probiotics useful in Helicobacter pylori eradication? World J Gastroenterol 21:10644–10653

    Article  CAS  Google Scholar 

  • Hsieh YY et al (2018) Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep 8:158

    Article  Google Scholar 

  • Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P (2011) Incidence of adenocarcinoma among patients with barrett’s esophagus. N Engl J Med 365:1375–1383

    Article  CAS  Google Scholar 

  • Islami F, Kamangar F (2008) Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res 1:329–338

    Article  CAS  Google Scholar 

  • Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L (2010) Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE 5:e9836

    Article  Google Scholar 

  • Kienesberger S et al (2018) Gastric Helicobacter pylori infection affects local and distant microbial populations and host responses. Cell Rep 14(6):1395–1407

    Article  Google Scholar 

  • Koenig JE et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108(suppl 1):4578–4585

    Article  CAS  Google Scholar 

  • Lee JY et al (2016) Helicobacter pylori infection with atrophic gastritis is an independent risk factor for advanced colonic neoplasm. Gut Liver 10:902–909

    Article  Google Scholar 

  • Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672

    Article  CAS  Google Scholar 

  • Luther J, Dave M, Higgins PD, Kao JY (2010) Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflamm Bowel Dis 16:1077–1084

    Article  Google Scholar 

  • Madan JC et al (2016) Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants. Jama Pediatr 170:212–219

    Article  Google Scholar 

  • Malaty HM et al (2002) Age at acquisition of Helicobacter pylori infection: a follow-up study from infancy to adulthood. Lancet 359:931–935

    Article  Google Scholar 

  • Maldonado-contreras A et al (2011) Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J 5:574–579

    Article  CAS  Google Scholar 

  • Marchesi JR et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339

    Article  Google Scholar 

  • May M, Abrams JA (2018) Emerging insights into the esophageal microbiome. Curr Treat Options Gastroenterol 16:72–85

    Article  Google Scholar 

  • Mcilroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL (2018) Review article: the gut microbiome in inflammatory bowel disease—avenues for microbial management. Aliment Pharmacol Ther 47:26–42

    Article  CAS  Google Scholar 

  • Mendall MA et al (1992) Childhood living conditions and Helicobacter pylori seropositivity in adult life. Lancet 339:896–897

    Article  CAS  Google Scholar 

  • Moles L et al (2017) Bacterial diversity of the gastric content of preterm infants during their first month of life at the hospital. Frontiers in Nutrition 4:12

    Article  Google Scholar 

  • Nam JH et al (2017) Helicobacter pylori infection is an independent risk factor for colonic adenomatous neoplasms. Cancer Causes Control 28:107–115

    Article  Google Scholar 

  • Noto JM, Peek RM (2017) The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog 13:e1006573

    Article  Google Scholar 

  • Nowroozilarki N, Jamshidi S, Zahraei Salehi T, Kolahian S (2017) Identification of Helicobacter and Wolinella spp. In oral cavity of toy breed dogs with periodontal disease. Topics in Companion Animal Medicine 32:96–99

    Article  Google Scholar 

  • Oh B et al (2016) The effect of probiotics on gut microbiota during the Helicobacter pylori eradication: randomized controlled trial. Helicobacter 21:165–174

    Article  CAS  Google Scholar 

  • O’Keeffe J, Moran AP (2008) Conventional, regulatory, and unconventional T cells in the immunologic response to Helicobacter pylori. Helicobacter 13:1–19

    Article  Google Scholar 

  • Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  Google Scholar 

  • Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ (2004) Bacterial biota in the human distal esophagus. Proc Natl Acad Sci U S A 101:4250–4255

    Article  CAS  Google Scholar 

  • Pei Z, Yang L, Peek RM, Levine SM, Pride DT, Blaser MJ (2005) Bacterial biota in reflux esophagitis and barrett’s esophagus. World J Gastroenterol 11:7277–7283

    Article  Google Scholar 

  • Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77. https://doi.org/10.1186/1478-811X-11-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rad R et al (2006) CD25 +/FoxP3 + T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology 131:525–537

    Article  CAS  Google Scholar 

  • Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9:565–576

    Article  CAS  Google Scholar 

  • Sanduleanu S, Jonkers D, De Bruine A, Hameeteman W, Stockbrugger RW (2001) Non-Helicobacter pylori bacterial flora during acid-suppressive therapy: differential findings in gastric juice and gastric mucosa. Aliment Pharmacol Ther 15:379–388

    Article  CAS  Google Scholar 

  • Smith MG, Hold GL, Tahara E, El-Omar EM (2006) Cellular and molecular aspects of gastric cancer. World J Gastroenterol 12:2979–2990

    Article  CAS  Google Scholar 

  • Smolka AJ, Backert S (2012) How Helicobacter pylori infection controls gastric acid secretion. J Gastroenterol 47(6):609–618

    Article  CAS  Google Scholar 

  • Smolka AJ, Schubert ML (2017) Helicobacter pylori-induced changes in gastric acid secretion and upper gastrointestinal disease. Curr Top Microbiol Immunol 400:227–252

    CAS  PubMed  Google Scholar 

  • Snider EJ, Freedberg DE, Abrams JA (2016) Potential role of the microbiome in barrett’s esophagus and esophageal adenocarcinoma. Dig Dis Sci 61:2217–2225

    Article  CAS  Google Scholar 

  • Sohn SH et al (2017) Analysis of gastric body microbiota by pyrosequencing: possible role of bacteria other than Helicobacter pylori in the gastric carcinogenesis. J Cancer Prev 22:115–125

    Article  Google Scholar 

  • Sonnenberg A, Lash RH, Genta RM (2010) A national study of Helicobacter pylori infection in gastric biopsy specimens. Gastroenterology 139:1894–1901

    Article  Google Scholar 

  • Sonnenberg A, Turner KO, Spechler SJ, Genta RM (2017) The influence of Helicobacter pylori on the ethnic distribution of barrett’s metaplasia. Aliment Pharmacol Ther 45:283–290

    Article  CAS  Google Scholar 

  • Thorell K et al (2017) In vivo analysis of the viable microbiota and Helicobacter pylori transcriptome in gastric infection and early stages of carcinogenesis. Infect Immun 85:e00031–17

    Article  Google Scholar 

  • Yamamura K et al (2016) Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin Cancer Res 22:5574–5581

    Article  CAS  Google Scholar 

  • Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z (2009) Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 137:588–597

    Article  Google Scholar 

  • Yassour M et al (2016) Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 8:343ra81

    Google Scholar 

  • Yatsunenko T et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Article  CAS  Google Scholar 

  • Yu G et al (2017a) Gastric microbiota features associated with cancer risk factors and clinical outcomes: a pilot study in gastric cardia cancer patients from Shanxi, China. Int J Cancer 141:45–51

    Article  CAS  Google Scholar 

  • Yu G et al (2017b) Molecular characterization of the human stomach microbiota in gastric cancer patients. Front Cell Infect Microbiol 7:302

    Article  Google Scholar 

  • Zhang H et al (2018) Helicobacter pylori colonization protects against chronic experimental colitis by regulating Th17/Treg balance. Inflamm Bowel Dis 24:1481–1492

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgina L. Hold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hold, G.L., Hansen, R. (2019). Impact of the Gastrointestinal Microbiome in Health and Disease: Co-evolution with the Host Immune System. In: Backert, S. (eds) Molecular Mechanisms of Inflammation: Induction, Resolution and Escape by Helicobacter pylori. Current Topics in Microbiology and Immunology, vol 421. Springer, Cham. https://doi.org/10.1007/978-3-030-15138-6_12

Download citation

Publish with us

Policies and ethics