Advertisement

Helicobacter pylori Deregulates T and B Cell Signaling to Trigger Immune Evasion

  • Victor E. ReyesEmail author
  • Alex G. Peniche
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 421)

Abstract

Helicobacter pylori is a prevalent human pathogen that successfully establishes chronic infection, which leads to clinically significant gastric diseases including chronic gastritis, peptic ulcer disease (PUD), and gastric cancer (GC). H. pylori is able to produce a persistent infection due in large part to its ability to hijack the host immune response. The host adaptive immune response is activated to strategically and specifically attack pathogens and normally clears them from the infected host. Since B and T lymphocytes are central mediators of adaptive immunity, in this chapter we review their development and the fundamental mechanisms regulating their activation in order to understand how some of the normal processes are subverted by H. pylori. In this review, we place particular emphasis on the CD4+ T cell responses, their subtypes, and regulatory mechanisms because of the expanding literature in this area related to H. pylori. T lymphocyte differentiation and function are finely orchestrated through a series of cell–cell interactions, which include immune checkpoint receptors. Among the immune checkpoint receptor family, there are some with inhibitory properties that are exploited by tumor cells to facilitate their immune evasion. Gastric epithelial cells (GECs), which act as antigen-presenting cells (APCs) in the gastric mucosa, are induced by H. pylori to express immune checkpoint receptors known to sway T lymphocyte function and thus circumvent effective T effector lymphocyte responses. This chapter reviews these and other mechanisms used by H. pylori to interfere with host immunity in order to persist.

Keywords

Immune evasion Immune checkpoint regulators Lymphocyte development Reprogramming Co-inhibitory receptors 

References

  1. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8(6):639–646.  https://doi.org/10.1038/ni1467CrossRefPubMedGoogle Scholar
  2. Adams EJ (2014) Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. Curr Opin Immunol 26:1–6.  https://doi.org/10.1016/j.coi.2013.09.005CrossRefPubMedGoogle Scholar
  3. Akhiani AA, Schon K, Franzen LE, Pappo J, Lycke N (2004) Helicobacter pylori-specific antibodies impair the development of gastritis, facilitate bacterial colonization, and counteract resistance against infection. J Immunol 172(8):5024–5033CrossRefGoogle Scholar
  4. Akhiani AA, Stensson A, Schon K, Lycke NY (2005) IgA antibodies impair resistance against Helicobacter pylori infection: studies on immune evasion in IL-10-deficient mice. J Immunol 174(12):8144–8153CrossRefGoogle Scholar
  5. Allen LA (1999) Intracellular niches for extracellular bacteria: lessons from Helicobacter pylori. J Leukoc Biol 66(5):753–756CrossRefGoogle Scholar
  6. Allen LA, Schlesinger LS, Kang B (2000) Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J Exp Med 191(1):115–128CrossRefGoogle Scholar
  7. Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, Foley JE, Massey PR, Felizardo TC, Riley JL, Levine BL, June CH, Medin JA, Fowler DH (2011) The PDL1-PD1 axis converts human Th1 cells into regulatory T cells. Sci Transl Med 3(111):111–120.  https://doi.org/10.1126/scitranslmed.3003130
  8. Amedei A, Cappon A, Codolo G, Cabrelle A, Polenghi A, Benagiano M, Tasca E, Azzurri A, D’Elios MM, Del PG, de Bernard M (2006) The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J Clin Invest 116(4):1092–1101.  https://doi.org/10.1172/JCI27177CrossRefPubMedPubMedCentralGoogle Scholar
  9. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B (1994) CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci U S A 91(20):9347–9351CrossRefGoogle Scholar
  10. Backert S, Tegtmeyer N, Fischer W (2015) Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol. 10(6):955–965.  https://doi.org/10.2217/fmb.15.32CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bamford KB, Fan X, Crowe SE, Leary JF, Gourley WK, Luthra GK, Brooks EG, Graham DY, Reyes VE, Ernst PB (1998a) Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastro 114(3):482–492CrossRefGoogle Scholar
  12. Bamford KB, Fan XJ, Crowe SE, Leary JF, Gourley WK, Luthra G, Brooks EG, Graham DY, Reyes VE, Ernst PB (1998b) Lymphocytes during infection with Helicobacter pylori have a helper 1 (Th1) phenotype. Gastroenterology 114:1–12CrossRefGoogle Scholar
  13. Bandeira A, Itohara S, Bonneville M, Burlen-Defranoux O, Mota-Santos T, Coutinho A, Tonegawa S (1991) Extrathymic origin of intestinal intraepithelial lymphocytes bearing T-cell antigen receptor gamma delta. Proc Natl Acad Sci U S A 88(1):43–47CrossRefGoogle Scholar
  14. Barrera C, Espejo R, Reyes VE (2002) Differential glycosylation of MHC class II molecules on gastric epithelial cells: Implications in local immune responses. Hum Immunol 63:384–393CrossRefGoogle Scholar
  15. Barrera C, Ye G, Espejo R, Gunasena S, Almanza R, Leary J, Crowe S, Ernst P, Reyes VE (2001) Expression of cathepsins B, L, S, and D by gastric epithelial cells implicates them as antigen presenting cells in local immune responses. Hum Immunol 62(10):1081–1091CrossRefGoogle Scholar
  16. Barrera CA, Beswick EJ, Bland DA, Espejo R, Mifflin RC, Adegboyega P, Crowe SE, Ernst PB, Reyes VE (2005) Polarized expression of CD74 by gastric epithelial cells. J Histochem Cytochem 53(12):1481–1489.  https://doi.org/10.1369/jhc.4A6552.2005CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bending D, De la Pena H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B, Cooke A (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Invest 119(3):565–572.  https://doi.org/10.1172/jci37865
  18. Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D, Khan N, Veldman G, Jacobs KA, Valge-Archer VE, Collins M, Carreno BM (2003) Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol 170(2):711–718CrossRefGoogle Scholar
  19. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC (1993) Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74(1):185–195CrossRefGoogle Scholar
  20. Beswick EJ, Bland D, Das S, Suarez G, Sierra J, Reyes VE (2004) Helicobacter pylori urease binds to CD74 and stimulates gastric epithelial cell responses associated with pathogenesis. Gastro 126(4):A401Google Scholar
  21. Beswick EJ, Bland DA, Suarez G, Barrera CA, Fan XJ, Reyes VE (2005) Helicobacter pylori binds to CD74 on gastric epithelial cells and stimulates interleukin-8 production. Infect Immun 73(5):2736–2743.  https://doi.org/10.1128/IAI.73.5.2736-2743.2005CrossRefPubMedPubMedCentralGoogle Scholar
  22. Beswick EJ, Pinchuk IV, Das S, Powell DW, Reyes VE (2007a) B7-H1 expression on gastric epithelial cells after Helicobacter pylori exposure promotes the development of CD4+ CD25+ FoxP3+ regulatory T cells. Infect Immun 75(9):4334–4341CrossRefGoogle Scholar
  23. Beswick EJ, Pinchuk IV, Das S, Powell DW, Reyes VE (2007b) Expression of the programmed death ligand 1, B7-H1, on gastric epithelial cells after Helicobacter pylori exposure promotes development of CD4+ CD25+ FoxP3+ regulatory T cells. Infect Immun 75(9):4334–4341.  https://doi.org/10.1128/IAI.00553-07CrossRefPubMedPubMedCentralGoogle Scholar
  24. Beswick EJ, Pinchuk IV, Earley RB, Schmitt DA, Reyes VE (2011) The role of gastric epithelial cell-derived TGF-{beta} in reduced CD4+ T cell proliferation and development of regulatory T cells during Helicobacter pylori infection. Infect Immun 79(7):2737–2745.  https://doi.org/10.1128/IAI.01146-10CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bimczok D, Kao JY, Zhang M, Cochrun S, Mannon P, Peter S, Wilcox CM, Monkemuller KE, Harris PR, Grams JM, Stahl RD, Smith PD, Smythies LE (2015) Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells. Mucosal Immunol 8(3):533–544.  https://doi.org/10.1038/mi.2014.86CrossRefPubMedGoogle Scholar
  26. Blanchard TG, Czinn SJ, Redline RW, Sigmund N, Harriman G, Nedrud JG (1999) Antibody-independent protective mucosal immunity to gastric helicobacter infection in mice. Cell Immunol 191(1):74–80.  https://doi.org/10.1006/cimm.1998.1421CrossRefPubMedGoogle Scholar
  27. Blum JS, Wearsch PA, Cresswell P (2013) Pathways of antigen processing. Annu Rev Immunol 31:443–473.  https://doi.org/10.1146/annurev-immunol-032712-095910CrossRefPubMedPubMedCentralGoogle Scholar
  28. Blumberg RS, Gerdes D, Chott A, Porcelli SA, Balk SP (1995) Structure and function of the CD1 family of MHC-like cell surface proteins. Immunol Rev 147:5–29CrossRefGoogle Scholar
  29. Bodger K, Bromelow K, Wyatt JI, Heatley RV (2001) Interleukin 10 in Helicobacter pylori associated gastritis: immunohistochemical localisation and in vitro effects on cytokine secretion. J Clin Path 54(4):285–92CrossRefGoogle Scholar
  30. Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amedei A, D’Elios MM, Telford JL, Baldari CT (2003) The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med 198(12):1887–1897.  https://doi.org/10.1084/jem.20030621CrossRefPubMedPubMedCentralGoogle Scholar
  31. Boussiotis VA, Chatterjee P, Li L (2014) Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J 20(4):265–271.  https://doi.org/10.1097/PPO.0000000000000059CrossRefPubMedPubMedCentralGoogle Scholar
  32. Brough HA, Cousins DJ, Munteanu A, Wong YF, Sudra A, Makinson K, Stephens AC, Arno M, Ciortuz L, Lack G, Turcanu V (2014) IL-9 is a key component of memory Th cell peanut-specific responses from children with peanut allergy. J Allergy Clin Immunol 134(6):1329–1338.  https://doi.org/10.1016/j.jaci.2014.06.032
  33. Cammarota G, Scheirle A, Takacs B, Doran DM, Knorr R, Bannwarth W, Guardiola J, Sinigaglia F (1992) Identification of a CD4 binding site on the beta 2 domain of HLA- DR molecules. Nature 356:799–801.  https://doi.org/10.1038/356799a0CrossRefPubMedGoogle Scholar
  34. Castano-Rodriguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2015) Autophagy in Helicobacter pylori infection and related gastric cancer. Helicobacter 20(5):353–369.  https://doi.org/10.1111/hel.12211CrossRefPubMedGoogle Scholar
  35. Ceeraz S, Nowak EC, Noelle RJ (2013) B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 34(11):556–563.  https://doi.org/10.1016/j.it.2013.07.003CrossRefPubMedGoogle Scholar
  36. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534.  https://doi.org/10.1038/ni.1867
  37. Chang S, Aune TM (2007) Dynamic changes in histone-methylation ‘marks’ across the locus encoding interferon-gamma during the differentiation of T helper type 2 cells. Nat Immunol 8(7):723–731.  https://doi.org/10.1038/ni1473CrossRefPubMedGoogle Scholar
  38. Chen L, Chen J, Xu B, Wang Q, Zhou W, Zhang G, Sun J, Shi L, Pei H, Wu C, Jiang J (2015) B7-H3 expression associates with tumor invasion and patient’s poor survival in human esophageal cancer. Am J Transl Res 7(12):2646–2660PubMedPubMedCentralGoogle Scholar
  39. Chen W, Shu D, Chadwick VS (2001) Helicobacter pylori infection: mechanism of colonization and functional dyspepsia Reduced colonization of gastric mucosa by Helicobacter pylori in mice deficient in interleukin-10. J Gastroenterol Hepatol 16(4):377–383CrossRefGoogle Scholar
  40. Cheng HH, Tseng GY, Yang HB, Wang HJ, Lin HJ, Wang WC (2012) Increased numbers of Foxp3-positive regulatory T cells in gastritis, peptic ulcer and gastric adenocarcinoma. World J Gastroenterol 18(1):34–43.  https://doi.org/10.3748/wjg.v18.i1.34CrossRefPubMedPubMedCentralGoogle Scholar
  41. Chiba Y, Mizoguchi I, Hasegawa H, Ohashi M, Orii N, Nagai T, Sugahara M, Miyamoto Y, Xu M, Owaki T, Yoshimoto T (2018) Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cell Mol Life Sci 75(8):1363–1376.  https://doi.org/10.1007/s00018-017-2724-5CrossRefPubMedGoogle Scholar
  42. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S (2011) ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34(6):932–946.  https://doi.org/10.1016/j.immuni.2011.03.023CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cimino-Mathews A, Thompson E, Taube JM, Ye X, Lu Y, Meeker A, Xu H, Sharma R, Lecksell K, Cornish TC, Cuka N, Argani P, Emens LA (2016) PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 47(1):52–63.  https://doi.org/10.1016/j.humpath.2015.09.003CrossRefPubMedPubMedCentralGoogle Scholar
  44. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H (2010) Human NKp44+ IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med 207(2):281–290.  https://doi.org/10.1084/jem.20091509CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cupedo T, Crellin NK, Papazian N, Rombouts EJ, Weijer K, Grogan JL, Fibbe WE, Cornelissen JJ, Spits H (2009) Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 10(1):66–74.  https://doi.org/10.1038/ni.1668CrossRefPubMedGoogle Scholar
  46. Czinn SJ, Cai A, Nedrud JG (1993) Protection of germ-free mice from infection by Helicobacter felis after active oral or passive IgA immunization. Vaccine 11(6):637–642CrossRefGoogle Scholar
  47. D’Elios MM, Amedei A, Cappon A, Del PG, de Bernard M (2007) The neutrophil-activating protein of Helicobacter pylori (HP-NAP) as an immune modulating agent. FEMS Immunol Med Microbiol 50(2):157–164.  https://doi.org/10.1111/j.1574-695X.2007.00258.xCrossRefPubMedGoogle Scholar
  48. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9(12):1347–1355.  https://doi.org/10.1038/ni.1677CrossRefPubMedPubMedCentralGoogle Scholar
  49. Das S, Suarez G, Beswick EJ, Sierra JC, Graham DY, Reyes VE (2006) Expression of B7-H1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol 176(5):3000–3009CrossRefGoogle Scholar
  50. de Sousa JR, Quaresma JAS (2018) The role of T helper 25 cells in the immune response to Mycobacterium leprae. J Am Acad Dermatol 78(5):1009–1011.  https://doi.org/10.1016/j.jaad.2017.11.025CrossRefPubMedGoogle Scholar
  51. Delyria ES, Redline RW, Blanchard TG (2009) Vaccination of mice against H pylori induces a strong Th-17 response and immunity that is neutrophil dependent. Gastro 136(1):247–256.  https://doi.org/10.1053/j.gastro.2008.09.017CrossRefGoogle Scholar
  52. Desjardins M, Huber LA, Parton RG, Griffiths G (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124(5):677–688CrossRefGoogle Scholar
  53. Devine L, Sun J, Barr MR, Kavathas PB (1999) Orientation of the Ig domains of CD8 alpha beta relative to MHC class I. J Immunol 162(2):846–851PubMedGoogle Scholar
  54. Djuretic IM, Levanon D, Negreanu V, Groner Y, Rao A, Ansel KM (2007) Transcription factors T-bet and Runx3 cooperate to activate Ifng and silence Il4 in T helper type 1 cells. Nat Immunol 8(2):145–153.  https://doi.org/10.1038/ni1424CrossRefPubMedGoogle Scholar
  55. DuPage M, Bluestone JA (2016) Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 16(3):149–163.  https://doi.org/10.1038/nri.2015.18CrossRefPubMedGoogle Scholar
  56. Dzierzanowska-Fangrat K, Michalkiewicz J, Cielecka-Kuszyk J, Nowak M, Celinska-Cedro D, Rozynek E, Dzierzanowska D, Crabtree JE (2008) Enhanced gastric IL-18 mRNA expression in Helicobacter pylori-infected children is associated with macrophage infiltration, IL-8, and IL-1 beta mRNA expression. Eur J Gastroenterol Hepatol 20(4):314–319.  https://doi.org/10.1097/MEG.0b013e3282f340daCrossRefPubMedGoogle Scholar
  57. Ellmark P, Ingvarsson J, Carlsson A, Lundin BS, Wingren C, Borrebaeck CA (2006) Identification of protein expression signatures associated with Helicobacter pylori infection and gastric adenocarcinoma using recombinant antibody microarrays. Mol Cell Proteomics 5(9):1638–1646.  https://doi.org/10.1074/mcp.M600170-MCP200CrossRefPubMedGoogle Scholar
  58. Ermak TH, Giannasca PJ, Nichols R, Myers GA, Nedrud J, Weltzin R, Lee CK, Kleanthous H, Monath TP (1998) Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II-restricted responses. J Exp Med 188(12):2277–2288CrossRefGoogle Scholar
  59. Eusebi LH, Zagari RM, Bazzoli F (2014) Epidemiology of Helicobacter pylori infection. Helicobacter 19(Suppl 1):1–5.  https://doi.org/10.1111/hel.12165CrossRefPubMedGoogle Scholar
  60. Evans DJ Jr, Evans DG, Lampert HC, Nakano H (1995a) Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene 153(1):123–127CrossRefGoogle Scholar
  61. Evans DJ Jr, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR (1995b) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63(6):2213–2220PubMedPubMedCentralGoogle Scholar
  62. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, Durham SR, Schmidt-Weber CB, Cavani A (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119(12):3573–3585.  https://doi.org/10.1172/JCI40202CrossRefPubMedPubMedCentralGoogle Scholar
  63. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN (2006) Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 203(4):1105–1116.  https://doi.org/10.1084/jem.20051615CrossRefPubMedPubMedCentralGoogle Scholar
  64. Fan X, Gunasena H, Cheng Z, Espejo R, Crowe SE, Ernst PB, Reyes VE (2000) Helicobacter pylori urease binds to class II MHC on gastric epithelial cells and induces their apoptosis. J Immunol 165(4):1918–1924CrossRefGoogle Scholar
  65. Fan XJ, Chua A, Shahi CN, Mcdevitt J, Keeling PWN, Kelleher D (1994) Gastric T lymphocyte responses to Helicobacter pylori in patients with H-pylori colonisation. Gut 35:1379–1384CrossRefGoogle Scholar
  66. Fan XJ, Crowe SE, Behar S, Gunasena H, Ye G, Haeberle H, Van Houten N, Gourley WK, Ernst PB, Reyes VE (1998) The effect of class II major histocompatibility complex expression on adherence of Helicobacter pylori and induction of apoptosis in gastric epithelial cells: A mechanism for T helper cell type 1-mediated damage. J Exp Med 187(10):1659–1669CrossRefGoogle Scholar
  67. Farinha P, Gascoyne RD (2005) Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol 23(26):6370–6378.  https://doi.org/10.1200/JCO.2005.05.011CrossRefPubMedGoogle Scholar
  68. Feeley KM, Heneghan MA, Stevens FM, McCarthy CF (1998) Lymphocytic gastritis and coeliac disease: evidence of a positive association. J Clin Pathol 51(3):207–210CrossRefGoogle Scholar
  69. Fehlings M, Drobbe L, Moos V, Renner VP, Hagen J, Beigier-Bompadre M, Pang E, Belogolova E, Churin Y, Schneider T, Meyer TF, Aebischer T, Ignatius R (2012) Comparative analysis of the interaction of Helicobacter pylori with human dendritic cells, macrophages, and monocytes. Infect Immun 80(8):2724–2734.  https://doi.org/10.1128/IAI.00381-12CrossRefPubMedPubMedCentralGoogle Scholar
  70. Fichtelius KE (1967) The mammalian equivalent to bursa Fabricii of birds. Exp Cell Res 46(1):231–234CrossRefGoogle Scholar
  71. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst SD, Zurawski G, Leach MW, Gorman DM, Rennick DM (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15(6):985–995CrossRefGoogle Scholar
  72. Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242.  https://doi.org/10.1111/j.1600-065X.2010.00923.xCrossRefPubMedPubMedCentralGoogle Scholar
  73. Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, Appleby M, Der SD, Kang J, Chambers CA (2009) CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 206(2):421–434.  https://doi.org/10.1084/jem.20081811CrossRefPubMedPubMedCentralGoogle Scholar
  74. Fukata M, Breglio K, Chen A, Vamadevan AS, Goo T, Hsu D, Conduah D, Xu R, Abreu MT (2008) The myeloid differentiation factor 88 (MyD88) is required for CD4+ T cell effector function in a murine model of inflammatory bowel disease. J Immunol 180(3):1886–1894CrossRefGoogle Scholar
  75. Futagami S, Takahashi H, Norose Y, Kobayashi M (1998) Systemic and local immune responses against Helicobacter pylori urease in patients with chronic gastritis: distinct IgA and IgG productive sites. Gut 43(2):168–175CrossRefGoogle Scholar
  76. Gebert B, Fischer W, Weiss E, Hoffmann R, Haas R (2003) Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301(5636):1099–1102.  https://doi.org/10.1126/science.1086871CrossRefPubMedGoogle Scholar
  77. Gerhard M, Schmees C, Voland P, Endres N, Sander M, Reindl W, Rad R, Oelsner M, Decker T, Mempel M, Hengst L, Prinz C (2005) A secreted low-molecular-weight protein from Helicobacter pylori induces cell-cycle arrest of T cells. Gastro 128(5):1327–1339CrossRefGoogle Scholar
  78. Gerlach K, McKenzie AN, Neurath MF, Weigmann B (2015) IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis. Tissue Barriers 3(1–2):e983777.  https://doi.org/10.4161/21688370.2014.983777CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gil JH, Seo JW, Cho MS, Ahn JH, Sung HY (2014) Role of Treg and Th17 cells of the gastric mucosa in children with Helicobacter pylori gastritis. J Pediatr Gastroenterol Nutr 58(2):252–258.  https://doi.org/10.1097/MPG.0000000000000194
  80. Gobert AP, Verriere T, Asim M, Barry DP, Piazuelo MB, de Sablet T, Delgado AG, Bravo LE, Correa P, Peek RM Jr, Chaturvedi R, Wilson KT (2014) Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. J Immunol 193(6):3013–3022.  https://doi.org/10.4049/jimmunol.1401075CrossRefPubMedPubMedCentralGoogle Scholar
  81. Gong M, Ling SS, Lui SY, Yeoh KG, Ho B (2010) Helicobacter pylori gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastro 139(2):564–573.  https://doi.org/10.1053/j.gastro.2010.03.050CrossRefGoogle Scholar
  82. Goswami R, Jabeen R, Yagi R, Pham D, Zhu J, Goenka S, Kaplan MH (2012) STAT6-dependent regulation of Th9 development. J Immunol 188(3):968–975.  https://doi.org/10.4049/jimmunol.1102840CrossRefPubMedGoogle Scholar
  83. Guindi M (2000) Role of activated host T cells in the promotion of MALT lymphoma growth. Semin Cancer Biol 10(5):341–344.  https://doi.org/10.1006/scbi.2000.0351CrossRefPubMedGoogle Scholar
  84. Haeberle HA, Kubin M, Bamford KB, Garofalo R, Graham DY, El Zaatari F, Karttunen R, Crowe SE, Reyes VE, Ernst PB (1997) Differential stimulation of interleukin-12 (IL-12) and IL-10 by live and killed Helicobacter pylori in vitro and association of IL-12 production with gamma interferon-producing T cells in the human gastric mucosa. Infect Immun 65(10):4229–4235PubMedPubMedCentralGoogle Scholar
  85. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP (1992) CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356:607–609.  https://doi.org/10.1038/356607a0CrossRefPubMedGoogle Scholar
  86. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132.  https://doi.org/10.1038/ni1254CrossRefPubMedGoogle Scholar
  87. Harwood NE, Batista FD (2010) Early events in B cell activation. Annu Rev Immunol 28:185–210.  https://doi.org/10.1146/annurev-immunol-030409-101216CrossRefPubMedGoogle Scholar
  88. Hatanaka K, Hokari R, Matsuzaki K, Kato S, Kawaguchi A, Nagao S, Suzuki H, Miyazaki K, Sekizuka E, Nagata H, Ishii H, Miura S (2002) Increased expression of mucosal address in cell adhesion molecule-1 (MAdCAM-1) and lymphocyte recruitment in murine gastritis induced by Helicobacter pylori. Clin Exp Immunol 130(2):183–189CrossRefGoogle Scholar
  89. Hayat M, Arora DS, Dixon MF, Clark B, O’Mahony S (1999) Effects of Helicobacter pylori eradication on the natural history of lymphocytic gastritis. Gut 45(4):495–498CrossRefGoogle Scholar
  90. Hirahara K, Ghoreschi K, Yang XP, Takahashi H, Laurence A, Vahedi G, Sciume G, Hall AO, Dupont CD, Francisco LM, Chen Q, Tanaka M, Kanno Y, Sun HW, Sharpe AH, Hunter CA, O’Shea JJ (2012) Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. Immunity 36(6):1017–1030.  https://doi.org/10.1016/j.immuni.2012.03.024CrossRefPubMedPubMedCentralGoogle Scholar
  91. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061CrossRefGoogle Scholar
  92. Hou J, Yu Z, Xiang R, Li C, Wang L, Chen S, Li Q, Chen M, Wang L (2014) Correlation between infiltration of FOXP3+ regulatory T cells and expression of B7-H1 in the tumor tissues of gastric cancer. Exp Mol Pathol 96(3):284–291.  https://doi.org/10.1016/j.yexmp.2014.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  93. Howie D, Spencer J, DeLord D, Pitzalis C, Wathen NC, Dogan A, Akbar A, MacDonald TT (1998) Extrathymic T cell differentiation in the human intestine early in life. J Immunol 161(11):5862–5872PubMedGoogle Scholar
  94. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’garra A, Murphy KM (1993) Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107):547–549Google Scholar
  95. Huppa JB, Gleimer M, Sumen C, Davis MM (2003) Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol 4(8):749–755.  https://doi.org/10.1038/ni951CrossRefPubMedGoogle Scholar
  96. Ishiwata K, Watanabe N, Guo M, Tomihara K, Brumlik MJ, Yagita H, Pardoll D, Chen L, Shin T (2010) Costimulator B7-DC attenuates strong Th2 responses induced by Nippostrongylus brasiliensis. J Immunol 184(4):2086–2094.  https://doi.org/10.4049/jimmunol.0804051CrossRefPubMedPubMedCentralGoogle Scholar
  97. Ismail HF, Fick P, Zhang J, Lynch RG, Berg DJ (2003) Depletion of neutrophils in IL-10(−/−) mice delays clearance of gastric Helicobacter infection and decreases the Th1 immune response to Helicobacter. J Immunol 170(7):3782–3789CrossRefGoogle Scholar
  98. Ito Y, Vela JL, Matsumura F, Hoshino H, Tyznik A, Lee H, Girardi E, Zajonc DM, Liddington R, Kobayashi M, Bao X, Bugaytsova J, Boren T, Jin R, Zong Y, Seeberger PH, Nakayama J, Kronenberg M, Fukuda M (2013) Helicobacter pylori cholesteryl alpha-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLoS ONE 8(12):e78191.  https://doi.org/10.1371/journal.pone.0078191CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133.  https://doi.org/10.1016/j.cell.2006.07.035CrossRefPubMedPubMedCentralGoogle Scholar
  100. Izcue A, Coombes JL, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 27:313–338.  https://doi.org/10.1146/annurev.immunol.021908.132657CrossRefPubMedGoogle Scholar
  101. Jafarzadeh A, Jamali M, Mahdavi R, Ebrahimi HA, Hajghani H, Khosravimashizi A, Nemati M, Najafipour H, Sheikhi A, Mohammadi MM, Daneshvar H (2015) Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J Mol Neurosci 55(4):891–897.  https://doi.org/10.1007/s12031-014-0443-zCrossRefPubMedGoogle Scholar
  102. Jang TJ (2010) The number of Foxp3-positive regulatory T cells is increased in Helicobacter pylori gastritis and gastric cancer. Pathol Res Pract 206(1):34–38.  https://doi.org/10.1016/j.prp.2009.07.019CrossRefPubMedGoogle Scholar
  103. Jenner RG, Townsend MJ, Jackson I, Sun K, Bouwman RD, Young RA, Glimcher LH, Lord GM (2009) The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 106(42):17876–17881.  https://doi.org/10.1073/pnas.0909357106CrossRefPubMedPubMedCentralGoogle Scholar
  104. Joffre OP, Segura E, Savina A, Amigorena S (2012) Cross-presentation by dendritic cells. Nat Rev Immunol 12(8):557–569.  https://doi.org/10.1038/nri3254CrossRefPubMedPubMedCentralGoogle Scholar
  105. Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W (2003) Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 198(6):963–969.  https://doi.org/10.1084/jem.20031244CrossRefPubMedPubMedCentralGoogle Scholar
  106. Kao JY, Zhang M, Miller MJ, Mills JC, Wang B, Liu M, Eaton KA, Zou W, Berndt BE, Cole TS, Takeuchi T, Owyang SY, Luther J (2010) Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastro 138(3):1046–1054.  https://doi.org/10.1053/j.gastro.2009.11.043CrossRefGoogle Scholar
  107. Karttunen R, Andersson G, Poikonen K, Kosunen TU, Kartunen T, Juutinen K, Niemela S (1990) Helicobacter pylori induces lymphocyte activation in peripheral blood cultures. Clin Exp Immunol 82:485–488CrossRefGoogle Scholar
  108. Kearley J, Erjefalt JS, Andersson C, Benjamin E, Jones CP, Robichaud A, Pegorier S, Brewah Y, Burwell TJ, Bjermer L, Kiener PA, Kolbeck R, Lloyd CM, Coyle AJ, Humbles AA (2011) IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am J Respir Crit Care Med 183(7):865–875.  https://doi.org/10.1164/rccm.200909-1462OCCrossRefPubMedGoogle Scholar
  109. Khader SA, Gaffen SL, Kolls JK (2009) Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol 2(5):403–411.  https://doi.org/10.1038/mi.2009.100CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91(5):661–672CrossRefGoogle Scholar
  111. Kranzer K, Eckhardt A, Aigner M, Knoll G, Deml L, Speth C, Lehn N, Rehli M, Schneider-Brachert W (2004) Induction of maturation and cytokine release of human dendritic cells by Helicobacter pylori. Infect Immun 72(8):4416–4423.  https://doi.org/10.1128/IAI.72.8.4416-4423.2004CrossRefPubMedPubMedCentralGoogle Scholar
  112. Kreymborg K, Etzensperger R, Dumoutier L, Haak S, Rebollo A, Buch T, Heppner FL, Renauld JC, Becher B (2007) IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179(12):8098–8104CrossRefGoogle Scholar
  113. Kuang DM, Xiao X, Zhao Q, Chen MM, Li XF, Liu RX, Wei Y, Ouyang FZ, Chen DP, Wu Y, Lao XM, Deng H, Zheng L (2014) B7-H1-expressing antigen-presenting cells mediate polarization of protumorigenic Th22 subsets. J Clin Invest 124(10):4657–4667.  https://doi.org/10.1172/JCI74381CrossRefPubMedPubMedCentralGoogle Scholar
  114. La-Beck NM, Jean GW, Huynh C, Alzghari SK, Lowe DB (2015) Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy 35(10):963–976.  https://doi.org/10.1002/phar.1643CrossRefPubMedGoogle Scholar
  115. Laan M, Cui ZH, Hoshino H, Lotvall J, Sjostrand M, Gruenert DC, Skoogh BE, Linden A (1999) Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 162(4):2347–2352PubMedGoogle Scholar
  116. Lai Kwan LQ, King Hung KO, Zheng BJ, Lu L (2008) Local BAFF gene silencing suppresses Th17-cell generation and ameliorates autoimmune arthritis. Proc Natl Acad Sci U S A 105(39):14993–14998.  https://doi.org/10.1073/pnas.0806044105CrossRefGoogle Scholar
  117. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201(2):233–240.  https://doi.org/10.1084/jem.20041257CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lee IF, Wang X, Hao J, Akhoundsadegh N, Chen L, Liu L, Langermann S, Ou D, Warnock GL (2013) B7-H4.Ig inhibits the development of type 1 diabetes by regulating Th17 cells in NOD mice. Cell Immunol 282(1):1–8.  https://doi.org/10.1016/j.cellimm.2013.03.005
  119. Lefrancois L, Puddington L (1995) Extrathymic intestinal T-cell development: virtual reality? Immunol Today 16(1):16–21CrossRefGoogle Scholar
  120. Lenschow DJ, Sperling AI, Cooke MP, Freeman G, Rhee L, Decker DC, Gray G, Nadler LM, Goodnow CC, Bluestone JA (1994) Differential up-regulation of the B7-1 and B7-2 costimulatory molecules after Ig receptor engagement by antigen. J Immunol 153:1990–1997PubMedGoogle Scholar
  121. Lewis ND, Asim M, Barry DP, de Sablet T, Singh K, Piazuelo MB, Gobert AP, Chaturvedi R, Wilson KT (2011) Immune evasion by Helicobacter pylori is mediated by induction of macrophage arginase II. J Immunol 186(6):3632–3641.  https://doi.org/10.4049/jimmunol.1003431CrossRefPubMedPubMedCentralGoogle Scholar
  122. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, Fouser LA (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203(10):2271–2279.  https://doi.org/10.1084/jem.20061308CrossRefPubMedPubMedCentralGoogle Scholar
  123. Lina TT, Alzahrani S, House J, Yamaoka Y, Sharpe AH, Rampy BA, Pinchuk IV, Reyes VE (2015) Helicobacter pylori cag pathogenicity island’s role in B7-H1 induction and immune evasion. PLoS ONE 10(3):e0121841.  https://doi.org/10.1371/journal.pone.0121841CrossRefPubMedPubMedCentralGoogle Scholar
  124. Lina TT, Pinchuk IV, House J, Yamaoka Y, Graham DY, Beswick EJ, Reyes VE (2013) CagA-dependent downregulation of B7-H2 expression on gastric mucosa and inhibition of Th17 responses during Helicobacter pylori infection. J Immunol 191(7):3838–3846.  https://doi.org/10.4049/jimmunol.1300524CrossRefPubMedPubMedCentralGoogle Scholar
  125. Loke P, Allison JP (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A 100(9):5336–5341.  https://doi.org/10.1073/pnas.0931259100CrossRefPubMedPubMedCentralGoogle Scholar
  126. Lou Z, Casali P, Xu Z (2015) Regulation of B cell differentiation by intracellular membrane-associated proteins and microRNAs: role in the antibody response. Front Immunol 6:537.  https://doi.org/10.3389/fimmu.2015.00537CrossRefPubMedPubMedCentralGoogle Scholar
  127. Love PE, Hayes SM (2010) ITAM-mediated signaling by the T-cell antigen receptor. Cold Spring Harb Perspect Biol 2(6):a002485.  https://doi.org/10.1101/cshperspect.a002485CrossRefPubMedPubMedCentralGoogle Scholar
  128. Lundgren A, Stromberg E, Sjoling A, Lindholm C, Enarsson K, Edebo A, Johnsson E, Suri-Payer E, Larsson P, Rudin A, Svennerholm AM, Lundin BS (2005) Mucosal FOXP3-expressing CD4+ CD25 high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun 73(1):523–531.  https://doi.org/10.1128/IAI.73.1.523-531.2005CrossRefPubMedPubMedCentralGoogle Scholar
  129. Lundgren A, Suri-Payer E, Enarsson K, Svennerholm AM, Lundin BS (2003) Helicobacter pylori-specific CD4+ CD25 high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect Immun 71(4):1755–1762Google Scholar
  130. Ly D, Moody DB (2014) The CD1 size problem: lipid antigens, ligands, and scaffolds. Cell Mol Life Sci 71(16):3069–3079.  https://doi.org/10.1007/s00018-014-1603-6CrossRefPubMedPubMedCentralGoogle Scholar
  131. Ma Z, Liu G, Zhang M, Li M, Liu Y, Yanfang J (2016) Helicobacter pylori infection increases frequency of PDCA-1(+) (CD317(+)) B-cell subsets. Arch Med Res 47(2):96–104.  https://doi.org/10.1016/j.arcmed.2016.04.003CrossRefPubMedGoogle Scholar
  132. Maddaly R, Pai G, Balaji S, Sivaramakrishnan P, Srinivasan L, Sunder SS, Paul SF (2010) Receptors and signaling mechanisms for B-lymphocyte activation, proliferation and differentiation–insights from both in vivo and in vitro approaches. FEBS Lett 584(24):4883–4894.  https://doi.org/10.1016/j.febslet.2010.08.022CrossRefPubMedGoogle Scholar
  133. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage1. Nature 441(7090):231–234.  https://doi.org/10.1038/nature04754CrossRefGoogle Scholar
  134. Martin-Orozco N, Chung Y, Chang SH, Wang YH, Dong C (2009) Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J Immunol 39(1):216–224.  https://doi.org/10.1002/eji.200838475CrossRefPubMedPubMedCentralGoogle Scholar
  135. McAlees JW, Lajoie S, Dienger K, Sproles AA, Richgels PK, Yang Y, Khodoun M, Azuma M, Yagita H, Fulkerson PC, Wills-Karp M, Lewkowich IP (2015) Differential control of CD4(+) T-cell subsets by the PD-1/PD-L1 axis in a mouse model of allergic asthma. Eur J Immunol 45(4):1019–1029.  https://doi.org/10.1002/eji.201444778CrossRefPubMedPubMedCentralGoogle Scholar
  136. McClory S, Hughes T, Freud AG, Briercheck EL, Martin C, Trimboli AJ, Yu J, Zhang X, Leone G, Nuovo G, Caligiuri MA (2012) Evidence for a stepwise program of extrathymic T cell development within the human tonsil. J Clin Invest 122(4):1403–1415.  https://doi.org/10.1172/JCI46125CrossRefPubMedPubMedCentralGoogle Scholar
  137. Meyer F, Ramanujam KS, Gobert AP, James SP, Wilson KT (2003) Cutting edge: cyclooxygenase-2 activation suppresses Th1 polarization in response to Helicobacter pylori. J Immunol 171(8):3913–3917CrossRefGoogle Scholar
  138. Michetti M, Kelly CP, Kraehenbuhl JP, Bouzourene H, Michetti P (2000) Gastric mucosal alpha(4)beta(7)-integrin-positive CD4 T lymphocytes and immune protection against helicobacter infection in mice. Gastro 119(1):109–118CrossRefGoogle Scholar
  139. Mora JR, von Andrian UH (2009) Role of retinoic acid in the imprinting of gut-homing IgA-secreting cells. Semin Immunol 21(1):28–35.  https://doi.org/10.1016/j.smim.2008.08.002CrossRefPubMedGoogle Scholar
  140. Moyat M, Bouzourene H, Ouyang W, Iovanna J, Renauld JC, Velin D (2017) IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice. Mucosal Immunol 10(1):271–281.  https://doi.org/10.1038/mi.2016.38
  141. Munari F, Fassan M, Capitani N, Codolo G, Vila-Caballer M, Pizzi M, Rugge M, Della BC, Troilo A, D’Elios S, Baldari CT, D’Elios MM, de Bernard M (2014) Cytokine BAFF released by Helicobacter pylori-infected macrophages triggers the Th17 response in human chronic gastritis. J Immunol 193(11):5584–5594.  https://doi.org/10.4049/jimmunol.1302865
  142. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566.  https://doi.org/10.1146/annurev-physiol-022516-034339CrossRefPubMedGoogle Scholar
  143. Nakayama T, Hirahara K, Onodera A, Endo Y, Hosokawa H, Shinoda K, Tumes DJ, Okamoto Y (2017) Th2 cells in health and disease. Annu Rev Immunol 35:53–84.  https://doi.org/10.1146/annurev-immunol-051116-052350CrossRefPubMedGoogle Scholar
  144. Nurgalieva ZZ, Conner ME, Opekun AR, Zheng CQ, Elliott SN, Ernst PB, Osato M, Estes MK, Graham DY (2005) B-cell and T-cell immune responses to experimental Helicobacter pylori infection in humans. Infect Immun 73(5):2999–3006.  https://doi.org/10.1128/IAI.73.5.2999-3006.2005CrossRefPubMedPubMedCentralGoogle Scholar
  145. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S, Matskevitch TD, Wang YH, Dong C (2009) Bcl6 mediates the development of T follicular helper cells. Science 325(5943):1001–1005.  https://doi.org/10.1126/science.1176676CrossRefPubMedPubMedCentralGoogle Scholar
  146. Oertli M, Noben M, Engler DB, Semper RP, Reuter S, Maxeiner J, Gerhard M, Taube C, Muller A (2013) Helicobacter pylori gamma-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci U S A 110(8):3047–3052.  https://doi.org/10.1073/pnas.1211248110CrossRefPubMedPubMedCentralGoogle Scholar
  147. Oertli M, Sundquist M, Hitzler I, Engler DB, Arnold IC, Reuter S, Maxeiner J, Hansson M, Taube C, Quiding-Jarbrink M, Muller A (2012) DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J Clin Invest 122(3):1082–1096.  https://doi.org/10.1172/JCI61029CrossRefPubMedPubMedCentralGoogle Scholar
  148. Otani K, Tanigawa T, Watanabe T, Nadatani Y, Sogawa M, Yamagami H, Shiba M, Watanabe K, Tominaga K, Fujiwara Y, Arakawa T (2012) Toll-like receptor 9 signaling has anti-inflammatory effects on the early phase of Helicobacter pylori-induced gastritis. Biochem Biophys Res Commun 426(3):342–349.  https://doi.org/10.1016/j.bbrc.2012.08.080CrossRefPubMedGoogle Scholar
  149. Pachathundikandi SK, Tegtmeyer N, Backert S (2013) Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4(6):454–474.  https://doi.org/10.4161/gmic.27001CrossRefPubMedPubMedCentralGoogle Scholar
  150. Pachathundikandi SK, Müller A, Backert S (2016) Inflammasome activation by Helicobacter pylori and its implications for persistence and immunity. Curr Top Microbiol Immunol 397:117–131.  https://doi.org/10.1007/978-3-319-41171-2_6CrossRefPubMedGoogle Scholar
  151. Pachathundikandi SK, Lind J, Tegtmeyer N, El-Omar EM, Backert S (2015) Interplay of the gastric pathogen Helicobacter pylori with toll-like receptors. Biomed Res Int 2015:192420.  https://doi.org/10.1155/2015/192420CrossRefPubMedPubMedCentralGoogle Scholar
  152. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369(6478):327–329.  https://doi.org/10.1038/369327a0CrossRefPubMedGoogle Scholar
  153. Pai SY, Truitt ML, Ho IC (2004) GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci U S A 101(7):1993–1998.  https://doi.org/10.1073/pnas.0308697100CrossRefPubMedPubMedCentralGoogle Scholar
  154. Papini E, de Bernard M, Milia E, Bugnoli M, Zerial M, Rappuoli R, Montecucco C (1994) Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci USA 91(21):9720–9724CrossRefGoogle Scholar
  155. Pappo J, Torrey D, Castriotta L, Savinainen A, Kabok Z, Ibraghimov A (1999) Helicobacter pylori infection in immunized mice lacking major histocompatibility complex class I and class II functions. Infect Immun 67(1):337–341PubMedPubMedCentralGoogle Scholar
  156. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6(11):1133–1141.  https://doi.org/10.1038/ni1261CrossRefPubMedPubMedCentralGoogle Scholar
  157. Park JJ, Omiya R, Matsumura Y, Sakoda Y, Kuramasu A, Augustine MM, Yao S, Tsushima F, Narazaki H, Anand S, Liu Y, Strome SE, Chen L, Tamada K (2010) B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116(8):1291–1298.  https://doi.org/10.1182/blood-2010-01-265975CrossRefPubMedPubMedCentralGoogle Scholar
  158. Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A, Golovina TN, Carroll RG, Riley JL, June CH (2010) The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med 2(55):55–78.  https://doi.org/10.1126/scitranslmed.3000448
  159. Plank MW, Kaiko GE, Maltby S, Weaver J, Tay HL, Shen W, Wilson MS, Durum SK, Foster PS (2017) Th22 cells form a distinct Th lineage from Th17 cells in vitro with unique transcriptional properties and Tbet-dependent Th1 plasticity. J Immunol 198(5):2182–2190.  https://doi.org/10.4049/jimmunol.1601480CrossRefPubMedPubMedCentralGoogle Scholar
  160. Portal-Celhay C, Perez-Perez GI (2006) Immune responses to Helicobacter pylori colonization: mechanisms and clinical outcomes. Clin Sci (Lond) 110(3):305–314.  https://doi.org/10.1042/CS20050232CrossRefGoogle Scholar
  161. Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77.  https://doi.org/10.1186/1478-811X-11-77CrossRefPubMedPubMedCentralGoogle Scholar
  162. Quiding-Jarbrink M, Ahlstedt I, Lindholm C, Johansson EL, Lonroth H (2001) Homing commitment of lymphocytes activated in the human gastric and intestinal mucosa. Gut 49(4):519–525CrossRefGoogle Scholar
  163. Quiding-Jarbrink M, Raghavan S, Sundquist M (2010) Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice. PLoS ONE 5(11):e15018.  https://doi.org/10.1371/journal.pone.0015018CrossRefPubMedPubMedCentralGoogle Scholar
  164. Reyes VE, Beswick EJ (2007) Helicobacter pylori neutrophil activating protein’s potential as tool in therapeutic immune modulation. Expert Opin Ther Pat 17(10):1315–1320.  https://doi.org/10.1517/13543776.17.10.1315CrossRefGoogle Scholar
  165. Rimbara E, Mori S, Kim H, Shibayama K (2013) Role of gamma-glutamyltranspeptidase in the pathogenesis of Helicobacter pylori infection. Microbiol Immunol 57(10):665–673.  https://doi.org/10.1111/1348-0421.12089CrossRefPubMedGoogle Scholar
  166. Robinson K, Kenefeck R, Pidgeon EL, Shakib S, Patel S, Polson RJ, Zaitoun AM, Atherton JC (2008) Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses. Gut 57(10):1375–1385.  https://doi.org/10.1136/gut.2007.137539CrossRefPubMedGoogle Scholar
  167. Rodriguez-Perea AL, Arcia ED, Rueda CM, Velilla PA (2016) Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol 185(3):281–291.  https://doi.org/10.1111/cei.12804CrossRefPubMedPubMedCentralGoogle Scholar
  168. Ruscher R, Kummer RL, Lee YJ, Jameson SC, Hogquist KA (2017) CD8alphaalpha intraepithelial lymphocytes arise from two main thymic precursors. Nat Immunol 18(7):771–779.  https://doi.org/10.1038/ni.3751CrossRefPubMedPubMedCentralGoogle Scholar
  169. Rutz S, Eidenschenk C, Ouyang W (2013) IL-22, not simply a Th17 cytokine. Immunol Rev 252(1):116–132.  https://doi.org/10.1111/imr.12027CrossRefPubMedGoogle Scholar
  170. Sayi A, Kohler E, Toller IM, Flavell RA, Muller W, Roers A, Muller A (2011) TLR-2-activated B cells suppress Helicobacter-induced preneoplastic gastric immunopathology by inducing T regulatory-1 cells. J Immunol 186(2):878–890.  https://doi.org/10.4049/jimmunol.1002269CrossRefPubMedGoogle Scholar
  171. Schaeffer EM, Debnath J, Yap G, McVicar D, Liao XC, Littman DR, Sher A, Varmus HE, Lenardo MJ, Schwartzberg PL (1999) Requirement for Tec kinases Rlk and Itk in T cell receptor signaling and immunity. Science 284(5414):638–641CrossRefGoogle Scholar
  172. Scheinman EJ, Avni O (2009) Transcriptional regulation of GATA3 in T helper cells by the integrated activities of transcription factors downstream of the interleukin-4 receptor and T cell receptor. J Biol Chem 284(5):3037–3048.  https://doi.org/10.1074/jbc.M807302200CrossRefPubMedGoogle Scholar
  173. Schmees C, Prinz C, Treptau T, Rad R, Hengst L, Voland P, Bauer S, Brenner L, Schmid RM, Gerhard M (2007) Inhibition of T-cell proliferation by Helicobacter pylori gamma-glutamyl transpeptidase. Gastro 132(5):1820–1833.  https://doi.org/10.1053/j.gastro.2007.02.031CrossRefGoogle Scholar
  174. Schwartz JT, Allen LA (2006) Role of urease in megasome formation and Helicobacter pylori survival in macrophages. J Leukoc Biol 79(6):1214–1225.  https://doi.org/10.1189/jlb.0106030CrossRefPubMedPubMedCentralGoogle Scholar
  175. Sewald X, Gebert-Vogl B, Prassl S, Barwig I, Weiss E, Fabbri M, Osicka R, Schiemann M, Busch DH, Semmrich M, Holzmann B, Sebo P, Haas R (2008) Integrin subunit CD18 Is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin. Cell Host Microbe 3(1):20–29.  https://doi.org/10.1016/j.chom.2007.11.003CrossRefPubMedGoogle Scholar
  176. Sewald X, Jimenez-Soto L, Haas R (2011) PKC-dependent endocytosis of the Helicobacter pylori vacuolating cytotoxin in primary T lymphocytes. Cell Microbiol 13(3):482–496.  https://doi.org/10.1111/j.1462-5822.2010.01551.xCrossRefPubMedGoogle Scholar
  177. Shi Y, Liu XF, Zhuang Y, Zhang JY, Liu T, Yin Z, Wu C, Mao XH, Jia KR, Wang FJ, Guo H, Flavell RA, Zhao Z, Liu KY, Xiao B, Guo Y, Zhang WJ, Zhou WY, Guo G, Zou QM (2010) Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol 184(9):5121–5129.  https://doi.org/10.4049/jimmunol.0901115CrossRefPubMedGoogle Scholar
  178. Smith SM (2014) Role of toll-like receptors in Helicobacter pylori infection and immunity. World J Gastrointest Pathophysiol 5(3):133–146.  https://doi.org/10.4291/wjgp.v5.i3.133CrossRefPubMedPubMedCentralGoogle Scholar
  179. Stagg AJ, Kamm MA, Knight SC (2002) Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur J Immunol 32(5):1445–1454.  https://doi.org/10.1002/1521-4141(200205)32:5%3c1445:AID-IMMU1445%3e3.0.CO;2-ECrossRefPubMedGoogle Scholar
  180. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202.  https://doi.org/10.1016/j.immuni.2010.07.014CrossRefPubMedGoogle Scholar
  181. Stephens GL, Swerdlow B, Benjamin E, Coyle AJ, Humbles A, Kolbeck R, Fung M (2011) IL-9 is a Th17-derived cytokine that limits pathogenic activity in organ-specific autoimmune disease. Eur J Immunol 41(4):952–962.  https://doi.org/10.1002/eji.201040879CrossRefPubMedGoogle Scholar
  182. Sundrud MS, Torres VJ, Unutmaz D, Cover TL (2004) Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci U S A 101(20):7727–7732.  https://doi.org/10.1073/pnas.0401528101CrossRefPubMedPubMedCentralGoogle Scholar
  183. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691.  https://doi.org/10.1084/jem.20060285CrossRefPubMedPubMedCentralGoogle Scholar
  184. Swaidani S, Bulek K, Kang Z, Gulen MF, Liu C, Yin W, Abbadi A, Aronica M, Li X (2011) T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation. J Immunol 187(6):3155–3164.  https://doi.org/10.4049/jimmunol.1002790CrossRefPubMedPubMedCentralGoogle Scholar
  185. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669CrossRefGoogle Scholar
  186. Takaba H, Takayanagi H (2017) The mechanisms of T cell selection in the thymus. Trends Immunol 38(11):805–816.  https://doi.org/10.1016/j.it.2017.07.010CrossRefPubMedGoogle Scholar
  187. Van Kaer L, Parekh VV, Postoak JL, Wu L (2017) Role of autophagy in MHC class I-restricted antigen presentation. Mol Immunol S0161–5890(17):330550–330553.  https://doi.org/10.1016/j.molimm.2017.10.021CrossRefGoogle Scholar
  188. Vieira PL, Christensen JR, Minaee S, O’Neill EJ, Barrat FJ, Boonstra A, Barthlott T, Stockinger B, Wraith DC, O’garra A (2004) IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+ CD25+ regulatory T cells. J Immunol 172(10):5986–5993CrossRefGoogle Scholar
  189. von Andrian UH, Mackay CR (2000). T-cell function and migration. Two sides of the same coin. N Engl J Med 343(14):1020–1034.  https://doi.org/10.1056/nejm200010053431407
  190. von Boehmer H (2005) Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat Rev Immunol 5(7):571–577.  https://doi.org/10.1038/nri1636CrossRefGoogle Scholar
  191. Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413CrossRefGoogle Scholar
  192. Weiner HL (2001) Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182:207–214CrossRefGoogle Scholar
  193. Weiss A, Newton M, Crommie D (1986) Expression of T3 in association with a molecule distinct from the T-cell antigen receptor heterodimer. Proc Natl Acad Sci U S A 83(18):6998–7002CrossRefGoogle Scholar
  194. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499.  https://doi.org/10.1038/ni.2035CrossRefPubMedGoogle Scholar
  195. Williams MB, Butcher EC (1997) Homing of naive and memory T lymphocyte subsets to Peyer’s patches, lymph nodes, and spleen. J Immunol 159(4):1746–1752PubMedGoogle Scholar
  196. Wu YY, Lin CW, Cheng KS, Lin C, Wang YM, Lin IT, Chou YH, Hsu PN (2010) Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection. Clin Exp Immunol 161(3):551–559.  https://doi.org/10.1111/j.1365-2249.2010.04217.xCrossRefPubMedPubMedCentralGoogle Scholar
  197. Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4+ CD25-Foxp3 T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178(11):6725–6729CrossRefGoogle Scholar
  198. Xu Z, Shen J, Wang MH, Yi T, Yu Y, Zhu Y, Chen B, Chen J, Li L, Li M, Zuo J, Jiang H, Zhou D, Luan J, Xiao Z (2016) Comprehensive molecular profiling of the B7 family of immune-regulatory ligands in breast cancer. Oncoimmunology 5(8):e1207841.  https://doi.org/10.1080/2162402X.2016.1207841CrossRefPubMedPubMedCentralGoogle Scholar
  199. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, Shah B, Chang SH, Schluns KS, Watowich SS, Feng XH, Jetten AM, Dong C (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29(1):44–56.  https://doi.org/10.1016/j.immuni.2008.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  200. Ye G, Barrera C, Fan XJ, Gourley WK, Crowe SE, Ernst PB, Reyes VE (1997) Expression of B7-1 and B7-2 costimulatory molecules by human gastric epithelial cells—potential role in CD4(+) T cell activation during Helicobacter pylori infection. J Clin Invest 99(7):1628–1636.  https://doi.org/10.1172/JCI119325CrossRefPubMedPubMedCentralGoogle Scholar
  201. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209(6):1201–1217.  https://doi.org/10.1084/jem.20112741CrossRefPubMedPubMedCentralGoogle Scholar
  202. Yoshida H, Hamano S, Senaldi G, Covey T, Faggioni R, Mu S, Xia M, Wakeham AC, Nishina H, Potter J, Saris CJ, Mak TW (2001) WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 15(4):569–578Google Scholar
  203. Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, LaRosa GJ, Yang LL, Soler D, Butcher EC, Ponath PD, Parker CM, Andrew DP (1999) Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med 190(9):1241–1256CrossRefGoogle Scholar
  204. Zhang B, Rong G, Wei H, Zhang M, Bi J, Ma L, Xue X, Wei G, Liu X, Fang G (2008) The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 374(3):533–537.  https://doi.org/10.1016/j.bbrc.2008.07.060CrossRefPubMedGoogle Scholar
  205. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A (1997) Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 272(34):21597–21603CrossRefGoogle Scholar
  206. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015) A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interaction. PloS Pathog 11:e1004621.  https://doi.org/10.1371/journal.ppat.1004621CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zheng PY, Jones NL (2003) Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell Microbiol 5(1):25–40.  https://doi.org/10.1371/journal.pone.0023629CrossRefPubMedGoogle Scholar
  208. Zhou X, Xia Z, Lan Q, Wang J, Su W, Han YP, Fan H, Liu Z, Stohl W, Zheng SG (2011) BAFF promotes Th17 cells and aggravates experimental autoimmune encephalomyelitis. PLoS ONE 6(8):e23629CrossRefGoogle Scholar
  209. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q, Killeen N, Urban JF Jr, Guo L, Paul WE (2004) Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 5(11):1157–1165.  https://doi.org/10.1038/ni1128CrossRefPubMedGoogle Scholar
  210. Zhuang Y, Shi Y, Liu XF, Zhang JY, Liu T, Fan X, Luo J, Wu C, Yu S, Chen L, Luo P, Guo G, Liu Z, Tang B, Mao XH, Guo Y, Zou QM (2011) Helicobacter pylori-infected macrophages induce Th17 cell differentiation. Immunobiology 216(1–2):200–207.  https://doi.org/10.1016/j.imbio.2010.05.005CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PediatricsThe University of Texas Medical Branch at GalvestonGalvestonUSA

Personalised recommendations