Skip to main content

Global-Local Enrichments in PUMA

  • Chapter
  • First Online:
Book cover Meshfree Methods for Partial Differential Equations IX (IWMMPDE 2017)

Abstract

In this paper we present the global-local enrichment approach in a general partition of unity method. Moreover, we propose an automatic scheme of computing an optimal parameter in Robin boundary conditions for the local problem. We present results of two dimensional fracture mechanics problems to demonstrate the properties and performance of the resulting method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011)

    Article  MathSciNet  Google Scholar 

  2. I. Babuška, X. Huang, R. Lipton, Machine computation using the exponentially convergent multiscale spectral generalized finite element method. ESAIM Math. Model Numer. Anal. 48(2), 493–515 (2014)

    Article  MathSciNet  Google Scholar 

  3. D. Braess, Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie (Springer, Berlin, 2013)

    Book  Google Scholar 

  4. C.A. Duarte, D.-J. Kim, Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput. Methods Appl. Mech. Eng. 197(6–8), 487–504 (2008)

    Article  MathSciNet  Google Scholar 

  5. C.A. Duarte, I. Babuška, J.T. Oden, Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000)

    Article  MathSciNet  Google Scholar 

  6. C.A. Duarte, O.N. Hamzeh, T.J. Liszka, W.W. Tworzydlo, A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput. Methods Appl. Mech. Eng. 190(15–17), 2227–2262 (2001)

    Article  Google Scholar 

  7. C.A. Duarte, D.-J. Kim, I. Babuška, A global-local approach for the construction of enrichment functions for the generalized FEM and its application to three-dimensional cracks, in Advances in Meshfree Techniques (Springer, Dordrecht, 2007), pp. 1–26

    MATH  Google Scholar 

  8. C.A. Felippa, Introduction to Finite Element Methods (University of Colorado, Boulder, 2001)

    Google Scholar 

  9. Fraunhofer SCAI, Puma - rapid enriched simulation application development, https://www.scai.fraunhofer.de/en/business-research-areas/meshfree-multiscale-methods/products/puma.html. Accessed 12 Dec 2018

  10. M.J. Gander, F. Kwok, Best robin parameters for optimized schwarz methods at cross points. SIAM J. Sci. Comput. 34(4), A1849–A1879 (2012)

    Article  MathSciNet  Google Scholar 

  11. M. Griebel, M.A. Schweitzer, A particle-partition of unity method for the solution of elliptic, parabolic and hyperbolic PDE. SIAM J. Sci. Comput. 22(3), 853–890 (2000)

    Article  MathSciNet  Google Scholar 

  12. M. Griebel, M.A. Schweitzer, A particle-partition of unity method—part II: efficient cover construction and reliable integration. SIAM J. Sci. Comp. 23(5), 1655–1682 (2002)

    Article  Google Scholar 

  13. V. Gupta, D.-J. Kim, C.A. Duarte, Analysis and improvements of global-local enrichments for the generalized finite element method. Comput. Meth. Appl. Mech. Eng. 245, 47–62 (2012)

    Article  MathSciNet  Google Scholar 

  14. D.-J. Kim, J.P. Pereira, C.A. Duarte, Analysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized FEM meshes. Int. J. Numer. Methods Eng. 81(3), 335–365 (2010)

    MATH  Google Scholar 

  15. D.-J. Kim, C.A. Duarte, N.A. Sobh, Parallel simulations of three-dimensional cracks using the generalized finite element method. Comput. Mech. 47(3), 265–282 (2011)

    Article  MathSciNet  Google Scholar 

  16. J.M. Melenk, I. Babuška, The partition of unity finite element method: basic theory and applications. Comput. Meth. Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    Article  MathSciNet  Google Scholar 

  17. N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  Google Scholar 

  18. C.D. Mote, Global-local finite element. Int. J. Numer. Methods Eng. 3(4), 565–574 (1971)

    Article  MathSciNet  Google Scholar 

  19. J.A. Plews, C.A. Duarte, A two-scale generalized finite element approach for modeling localized thermoplasticity. Int. J. Numer. Methods Eng. 108(10), 1123–1158 (2016)

    Article  MathSciNet  Google Scholar 

  20. M. Schöllmann, M. Fulland, H.A. Richard, Development of a new software for adaptive crack growth simulations in 3d structures. Eng. Fract. Mech. 70(2), 249–268 (2003)

    Article  Google Scholar 

  21. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 29 (Springer, Berlin, 2003)

    Google Scholar 

  22. M.A. Schweitzer, An algebraic treatment of essential boundary conditions in the particle–partition of unity method. SIAM J. Sci. Comput. 31(2), 1581–1602 (2009)

    Article  MathSciNet  Google Scholar 

  23. M.A. Schweitzer, An adaptive hp-version of the multilevel particle–partition of unity method. Comput. Methods Appl. Mech. Eng. 198, 1260–1272 (2009)

    Article  MathSciNet  Google Scholar 

  24. M.A. Schweitzer, Stable enrichment and local preconditioning in the particle–partition of unity method. Numer. Math. 118(1), 137–170 (2011)

    Article  MathSciNet  Google Scholar 

  25. M.A. Schweitzer, Generalizations of the finite element method. Cent. Eur. J. Math. 10, 3–24 (2012)

    Article  MathSciNet  Google Scholar 

  26. M.A. Schweitzer, S. Wu, Evaluation of local multiscale approximation spaces for partition of unity methods, in Meshfree Methods for Partial Differential Equations VIII (Springer, Cham, 2017), pp. 167–198

    MATH  Google Scholar 

  27. M.A. Schweitzer, A. Ziegenhagel, Rapid enriched simulation application development with puma, in Scientific Computing and Algorithms in Industrial Simulations (Springer, Cham, 2017), pp. 207–226

    Book  Google Scholar 

  28. T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method. Comput. Meth. Appl. Mech. Eng. 190(32–33), 4081–4193 (2001)

    Article  MathSciNet  Google Scholar 

  29. N. Sukumar, Z.Y. Huang, J.-H. Prévost, Z. Suo, Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59(8), 1075–1102 (2004)

    Article  Google Scholar 

  30. C.T. Sun, K.M. Mao, A global-local finite element method suitable for parallel computations. Comput. Struct. 29(2), 309–315 (1988)

    Article  Google Scholar 

  31. A. Ural, G. Heber, P.A. Wawrzynek, A.R. Ingraffea, D.G. Lewicki, J.B.C. Neto, Three-dimensional, parallel, finite element simulation of fatigue crack growth in a spiral bevel pinion gear. Eng. Fract. Mech. 72(8), 1148–1170 (2005)

    Article  Google Scholar 

  32. P.A. Wawrzynek, L.F. Martha, A.R. Ingraffea, A computational environment for the simulation of fracture processes in three dimensions, Analytical, numerical and experimental aspects of three dimensional fracture processes. ASME AMD 91, 321–327 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Birner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Birner, M., Schweitzer, M.A. (2019). Global-Local Enrichments in PUMA. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations IX. IWMMPDE 2017. Lecture Notes in Computational Science and Engineering, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-15119-5_10

Download citation

Publish with us

Policies and ethics