Skip to main content

The Origins of Ageing

  • Chapter
  • First Online:
The Biology of Senescence

Part of the book series: Practical Issues in Geriatrics ((PIG))

  • 564 Accesses

Abstract

Cellular senescence is the consequence of multiple factors, including genome instability, heredity, abnormalities in telomere function, proteostasis, epigenetics, and microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A recent review article focused on healthy aging and microbiota was mainly centered on experimental approaches and did not succeeds in isolating any specific bacterial families in elderly [55].

References

  1. Hanahan D, et al. Hallmarks of cancer : the next generation. Cell. 2011;144:647.

    Article  Google Scholar 

  2. Hanahan D, et al. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  Google Scholar 

  3. Lopez-Otin C, et al. The hallmarks of aging. Cell. 2013;153:1194.

    Article  CAS  Google Scholar 

  4. Partridge L, et al. Facing up to the global challenges of ageing. Nature. 2018;561:45–56.

    Article  CAS  Google Scholar 

  5. Childs BG, et al. Cellular senescence in aging and age-related disease: from mechanisms to theory. Nat Med. 2015;21:1424–35.

    Article  CAS  Google Scholar 

  6. Hayflick L, et al. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    Article  CAS  Google Scholar 

  7. Finkel T, et al. The common biology of cancer and ageing. Nature. 2007;448:767–74.

    Article  CAS  Google Scholar 

  8. Kane AE, et al. Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018;123:868–85.

    Article  CAS  Google Scholar 

  9. Yin J-A, et al. Genetic variation in glia-neuron signaling modulates ageing rate. Nature. 2017;551:198–203.

    Article  CAS  Google Scholar 

  10. Cellerino A, et al. What we learned on aging from omics studies. Semin Cell Dev Biol. 2017;70:177–89.

    Article  CAS  Google Scholar 

  11. Dekker J, et al. The 4D nucleome project. Nature. 2017;549:219–26.

    Article  CAS  Google Scholar 

  12. Baker DJ, et al. Increased expression of BubR1 protects against aneuploidy and cancer and extends healthy lifespan. Nat Cell Biol. 2013;15:96–102.

    Article  CAS  Google Scholar 

  13. De Cecco M, et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell. 2013;12:247–56.

    Article  Google Scholar 

  14. Gorbunova V, et al. Sleeping dogs of the genome : retrotransposable elements may be agents of somatic diversity, disease and aging. Science. 2014;346:1187–8.

    Article  CAS  Google Scholar 

  15. Giuliani C, et al. Genetics of human longevity within an eco-evolutionary nature-nurture framework. Circ Res. 2018;123:745–72.

    Article  CAS  Google Scholar 

  16. Gems D, et al. Genetics of longevity in models organisms: debates and paradigms. Annu Rev Physiol. 2013;75:621–44.

    Article  CAS  Google Scholar 

  17. Jones OR, et al. Diversity of ageing across the tree of life. Nature. 2014;505:169–73.

    Article  CAS  Google Scholar 

  18. Vijg J, et al. Puzzles, promises and a cure for ageing. Nature. 2008;454:1065–71.

    Article  CAS  Google Scholar 

  19. Burtner CR, et al. Progeria syndromes and ageing: what is the connexion. Nat Rev Mol Cell Biol. 2010;11:567–78.

    Article  CAS  Google Scholar 

  20. Kudlow BA, et al. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol. 2007;8:394–404.

    Article  CAS  Google Scholar 

  21. Christensen K. The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet. 2006;7:437–48.

    Article  Google Scholar 

  22. Kenyon CJ. The genetics of ageing. Nature. 2010;464:504–12.

    Article  CAS  Google Scholar 

  23. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539:180–6.

    Article  CAS  Google Scholar 

  24. Blackburn EH. Switching and signalling at the telomere. Cell. 2001;106:661–73.

    Article  CAS  Google Scholar 

  25. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009;361:2353–65.

    Article  CAS  Google Scholar 

  26. Cech TR. Beginning to understand the end of the chromosome. Cell. 2004;116:273–9.

    Article  CAS  Google Scholar 

  27. Aubert G, et al. Telomeres and aging. Physiol Rev. 2008;88:557–79.

    Article  CAS  Google Scholar 

  28. Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Metab Care. 2010;14(1):28–34.

    Article  Google Scholar 

  29. Jesus BB, et al. Telomerase at the intersection of cancer and aging. Trends Genet. 2013;29:513–20.

    Article  Google Scholar 

  30. Deng Y, Chan SS, Chang S. Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer. 2008;8:450–8.

    Article  CAS  Google Scholar 

  31. Hornsby PJ. Short telomeres : cause or consequence of aging ? Aging Cell. 2006;5:577–8.

    Article  CAS  Google Scholar 

  32. Jaskelioff M, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature. 2011;469:102–6.

    Article  CAS  Google Scholar 

  33. Genereux JC, et al. Regulating extracellular proteostasis capacity through the unfolded protein response. Prion. 2015;9:10–21.

    Article  CAS  Google Scholar 

  34. Henning RH, et al. Proteostasis in cardiac health and disease. Nat Rev Cardiol. 2017;14:637–53.

    Article  CAS  Google Scholar 

  35. Kaushik S, et al. Proteostasis and aging. Nat Med. 2015;21:1406–15.

    Article  CAS  Google Scholar 

  36. Labbadia J, et al. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435–64.

    Article  CAS  Google Scholar 

  37. Singh SR, et al. Desmin and cardiac disease. An unfolding story. Circ Res. 2018;122:1324–6.

    Article  CAS  Google Scholar 

  38. Desvergne A, et al. Circadian modulation of proteasome acitivity and accumulation of oxidized protein in human embryonic kideney HEK 23 cells and primary derma fibroblasts. Free Radic Biol Med. 2016;4:195–207.

    Article  Google Scholar 

  39. Delcayre C, et al. Synthesis of stress proteins in rat myocytes 2–4 days after imposition of hemodynamic load. J Clin Invest. 1988;82:460–8.

    Article  CAS  Google Scholar 

  40. Calderwood SK, et al. The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini-review. Gerontology. 2009;55:550–8.

    Article  CAS  Google Scholar 

  41. Ransohoff RM. How neuro-inflammation contributes to neuro-degeneration. Science. 2016;353:777–84.

    Article  CAS  Google Scholar 

  42. Koga H, et al. Protein homeostasis and aging : the importance of exquisite quality control. Ageing Res Rev. 2011;10:205–15.

    Article  CAS  Google Scholar 

  43. MacLendon PM, et al. Proteotoxicity and cardiac function. Circ Res. 2015;116:1863–82.

    Article  Google Scholar 

  44. Powers ET, et al. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959–91.

    Article  CAS  Google Scholar 

  45. Willis MS, et al. Proteotoxicity and cardiac dysfunction- Alzheimer’s disease of the heart? N Engl J Med. 2013;368:454–64.

    Article  Google Scholar 

  46. Berson A, et al. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 2018;41(9):587–98. https://doi.org/10.1016/j.tins.2018.05.005.

    Article  CAS  PubMed  Google Scholar 

  47. Margueron R, et al. Chromatin structure and the inheritance of epigénétic information. Nat Rev Genet. 2010;11:285–96.

    Article  CAS  Google Scholar 

  48. Horvath S. DNA methylation age of human tissues and cell type. Genome. 2013;14:R115.

    Google Scholar 

  49. Zhang W, et al. Epigenetic modifications in cardiovascular aging and diseases. Circ Res. 2018;123:773–86.

    Article  CAS  Google Scholar 

  50. Claesson MJ, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  Google Scholar 

  51. Vaiserman AM, et al. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev. 2017;35:36–45.

    Article  CAS  Google Scholar 

  52. Goodrich JK, et al. Human genetics shape gut microbiome. Cell. 2013;159:789–99.

    Article  Google Scholar 

  53. Biagi E, et al. Gut microbiota and extreme longevity. Curr Biol. 2016;26:1480–5.

    Article  CAS  Google Scholar 

  54. Biagi E, et al. The gut microbiota of centenarians: signatures of longevity in te gut microbiota profile. Mech Ageing Dev. 2017;165(Pt B):180–4.

    Article  Google Scholar 

  55. Kim S, et al. The gut microbiota and healthy aging : a minireview. Gerontology. 2018;64(6):513–20. https://doi.org/10.1159/000490615.

    Article  CAS  PubMed  Google Scholar 

  56. Anand R, et al. Effect of aging on the composition of fecal microbiota in donors for FMT and its impact on clinical outcomes. Dig Dis Sci. 2017;62(4):1002–8. https://doi.org/10.1007/s10620-017-4449-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swynghedauw, B. (2019). The Origins of Ageing. In: The Biology of Senescence. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-030-15111-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15111-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15110-2

  • Online ISBN: 978-3-030-15111-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics