Extrapolation and Interpolation

  • Petteri Harjulehto
  • Peter Hästö
Part of the Lecture Notes in Mathematics book series (LNM, volume 2236)


In this chapter, we develop two techniques which allow us to transfer results of harmonic analysis from one setting to another: extrapolation and interpolation.


  1. 5.
    A. Almeida, P. Harjulehto, P. Hästö, T. Lukkari, Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces. Ann. Mat. Pura Appl. (4) 194(2), 405–424 (2015)MathSciNetCrossRefGoogle Scholar
  2. 6.
    K.F. Andersen, R.T. John, Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math. 69(1), 19–31 (1980/81)MathSciNetCrossRefGoogle Scholar
  3. 23.
    R. Coifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)MathSciNetCrossRefGoogle Scholar
  4. 27.
    D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Birkhäuser, Basel, 2013)CrossRefGoogle Scholar
  5. 28.
    D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Pérez, The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math. 31(1), 239–264 (2006)MathSciNetzbMATHGoogle Scholar
  6. 29.
    D. Cruz-Uribe, P. Hästö, Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370(6), 4323–4349 (2018)MathSciNetCrossRefGoogle Scholar
  7. 30.
    D. Cruz-Uribe, J.M. Martell, C. Pérez, Weights, Extrapolation and the Theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications (Birkhäuser/Springer Basel AG, Basel, 2011)Google Scholar
  8. 31.
    D. Cruz-Uribe, L.-A.D. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Am. Math. Soc. 369(2), 1205–1235 (2017)MathSciNetCrossRefGoogle Scholar
  9. 34.
    L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics (Springer, Heidelberg, 2011)zbMATHGoogle Scholar
  10. 35.
    L. Diening, P. Hästö, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in FSDONA04 Proceedings Drabek and Rakosnik (eds.); Milovy, Czech Republic (Academy of Sciences of the Czech Republic, Prague, 2005), pp. 38–58Google Scholar
  11. 37.
    J. Duoandikoetxea, Fourier Analysis, volume 29 of Graduate Studies in Mathematics (American Mathematical Society, Providence, RI, 2001)Google Scholar
  12. 49.
    J. Hadamard, Sur les fonctions entiéres. Bull. Soc. Math. France 24, 186–187 (1896)zbMATHGoogle Scholar
  13. 51.
    E. Harboure, R.A. Macías, C. Segovia, Extrapolation results for classes of weights. Am. J. Math. 110(3), 383–397 (1988)MathSciNetCrossRefGoogle Scholar
  14. 69.
    T. Karaman, Hardy operators on Musielak-Orlicz spaces. Forum Math. 30(5), 1245–1254 (2018)MathSciNetCrossRefGoogle Scholar
  15. 87.
    F.-Y. Maeda, Y. Sawano, T. Shimomura, Some norm inequalities in Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 41(2), 721–744 (2016)MathSciNetCrossRefGoogle Scholar
  16. 96.
    J. Musielak, Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics (Springer, Berlin, 1983)Google Scholar
  17. 116.
    H. Rafeiro, S. Samko, Maximal operator with rough kernel in variable Musielak-Morrey-Orlicz type spaces, variable Herz spaces and grand variable Lebesgue spaces. Integr. Equ. Oper. Theory 89(1), 111–124 (2017)MathSciNetCrossRefGoogle Scholar
  18. 120.
    J.L. Rubio de Francia, Factorization and extrapolation of weights. Bull. Am. Math. Soc. (N.S.) 7(2), 393–395 (1982)Google Scholar
  19. 127.
    S. Yang, D. Yang, W. Yuan, New characterizations of Musielak-Orlicz-Sobolev spaces via sharp ball averaging functions. Front. Math. China (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petteri Harjulehto
    • 1
  • Peter Hästö
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations