• Petteri Harjulehto
  • Peter Hästö
Part of the Lecture Notes in Mathematics book series (LNM, volume 2236)


As mentioned in the introduction, we approach Φ-functions and Orlicz spaces by slightly more robust properties than the commonly used convexity.


  1. 29.
    D. Cruz-Uribe, P. Hästö, Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370(6), 4323–4349 (2018)MathSciNetCrossRefGoogle Scholar
  2. 34.
    L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics (Springer, Heidelberg, 2011)zbMATHGoogle Scholar
  3. 52.
    P. Harjulehto, P. Hästö, The Riesz potential in generalized Orlicz spaces. Forum Math. 29(1), 229–244 (2017)MathSciNetCrossRefGoogle Scholar
  4. 61.
    P. Hästö, J. Ok, Maximal regularity for local minimizers of non-autonomous functionals. Preprint (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petteri Harjulehto
    • 1
  • Peter Hästö
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations