Advertisement

Introduction

  • Petteri Harjulehto
  • Peter Hästö
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2236)

Abstract

We hope that our tools and exposition will aid in generalizing further results from the variable exponent setting to the generalized Orlicz setting.

References

  1. 2.
    R. Adams. Sobolev Spaces. Pure and Applied Mathematics, Vol. 65 (Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975)Google Scholar
  2. 7.
    P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals. Nonlinear Anal. 121, 206–222 (2015)MathSciNetCrossRefGoogle Scholar
  3. 9.
    P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), Art. 62 (2018)Google Scholar
  4. 11.
    D. Baruah, P. Harjulehto, P. Hästö, Capacities in generalized Orlicz spaces. J. Funct. Spaces Art. ID 8459874, 10, (2018)zbMATHGoogle Scholar
  5. 18.
    R.E. Castillo, H. Rafeiro, An Introductory Course in Lebesgue Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, Cham, 2016)Google Scholar
  6. 21.
    I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal. 175, 1–27 (2018)MathSciNetCrossRefGoogle Scholar
  7. 25.
    M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218(1), 219–273 (2015)MathSciNetCrossRefGoogle Scholar
  8. 26.
    M. Colombo, G. Mingione, Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215(2), 443–496 (2015)MathSciNetCrossRefGoogle Scholar
  9. 27.
    D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Birkhäuser, Basel, 2013)CrossRefGoogle Scholar
  10. 29.
    D. Cruz-Uribe, P. Hästö, Extrapolation and interpolation in generalized Orlicz spaces. Trans. Am. Math. Soc. 370(6), 4323–4349 (2018)MathSciNetCrossRefGoogle Scholar
  11. 32.
    L. Diening, Maximal function on generalized Lebesgue spaces L p(⋅). Math. Inequal. Appl. 7, 245–253 (2004)MathSciNetzbMATHGoogle Scholar
  12. 33.
    L. Diening, Maximal function on Orlicz–Musielak spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)MathSciNetCrossRefGoogle Scholar
  13. 34.
    L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics (Springer, Heidelberg, 2011)zbMATHGoogle Scholar
  14. 38.
    D.E. Edmunds, J. Lang, O. Méndez, Differential Operators on Spaces of Variable Integrability (World Scientific Publishing, Hackensack, NJ, 2014)CrossRefGoogle Scholar
  15. 39.
    L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p, q) growth. J. Differ. Equ. 204(1), 5–55 (2004)MathSciNetCrossRefGoogle Scholar
  16. 42.
    R. Ferreira, P. Hästö, A. Ribeiro, Characterization of generalized Orlicz spaces. Commun. Contemp. Math. (2019, to appear). https://doi.org/10.1142/S0219199718500797
  17. 50.
    P.R. Halmos, Measure Theory (D. Van Nostrand Company, New York, NY, 1950)Google Scholar
  18. 52.
    P. Harjulehto, P. Hästö, The Riesz potential in generalized Orlicz spaces. Forum Math. 29(1), 229–244 (2017)MathSciNetCrossRefGoogle Scholar
  19. 57.
    P. Harjulehto, P. Hästö, M. Lee, Hölder continuity of quasiminimizers and ω-minimizers of functionals with generalized Orlicz growth. Preprint (2018)Google Scholar
  20. 61.
    P. Hästö, J. Ok, Maximal regularity for local minimizers of non-autonomous functionals. Preprint (2019)Google Scholar
  21. 62.
    P.A. Hästö, Corrigendum to “The maximal operator on generalized Orlicz spaces” [J. Funct. Anal. 269, 4038–4048 (2015)] [MR3418078]. J. Funct. Anal. 271(1), 240–243 (2016)Google Scholar
  22. 72.
    V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-standard Function Spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications (Birkhäuser/Springer, Cham, 2016). Variable exponent Lebesgue and amalgam spaceszbMATHGoogle Scholar
  23. 73.
    V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-standard Function Spaces. Vol. 2, volume 249 of Operator Theory: Advances and Applications (Birkhäuser/Springer, Cham, 2016). Variable exponent Hölder, Morrey-Campanato and grand spaceszbMATHGoogle Scholar
  24. 75.
    M.A. Krasnoselskiı̆, J.B. Rutickiı̆, Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron. P. (Noordhoff Ltd., Groningen, 1961)Google Scholar
  25. 76.
    J. Lang, O. Méndez, Analysis on Function Spaces of Musielak-Orlicz Type. Monographs and Research Notes in Mathematics (Chapman & Hall/CRC, 2019)Google Scholar
  26. 77.
    A. Lerner, Some remarks on the Hardy–Littlewood maximal function on variable L p spaces. Math. Z. 251, 509–521 (2005)MathSciNetCrossRefGoogle Scholar
  27. 78.
    D. Liu, J. Yao, A class of De Giorgi type and local boundedness. Topol. Methods Nonlinear Anal. 51(2), 345–370 (2018)MathSciNetzbMATHGoogle Scholar
  28. 79.
    F.-Y. Maeda, Y. Mizuta, T. Ohno, T. Shimomura, Approximate identities and Young type inequalities in Musielak-Orlicz spaces. Czech. Math. J. 63(138)(4), 933–948 (2013)MathSciNetCrossRefGoogle Scholar
  29. 87.
    F.-Y. Maeda, Y. Sawano, T. Shimomura, Some norm inequalities in Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 41(2), 721–744 (2016)MathSciNetCrossRefGoogle Scholar
  30. 89.
    P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions. Arch. Ration. Mech. Anal. 105(3), 267–284 (1989)MathSciNetCrossRefGoogle Scholar
  31. 90.
    P. Marcellini, Regularity and existance of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 50, 1–30 (1991)CrossRefGoogle Scholar
  32. 94.
    Y. Mizuta, T. Ohno, T. Shimomura, Sobolev inequalities for Musielak-Orlicz spaces. Manuscripta Math. 155(1–2), 209–227 (2018)MathSciNetCrossRefGoogle Scholar
  33. 96.
    J. Musielak, Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics (Springer, Berlin, 1983)Google Scholar
  34. 97.
    J. Musielak, W. Orlicz, On modular spaces. Studia Math. 18, 49–65 (1959)MathSciNetCrossRefGoogle Scholar
  35. 98.
    H. Nakano, Modulared Semi-Ordered Linear Spaces (Maruzen Co. Ltd., Tokyo, 1950)zbMATHGoogle Scholar
  36. 99.
    H. Nakano, Topology of Linear Topological Spaces (Maruzen Co. Ltd., Tokyo, 1951)Google Scholar
  37. 101.
    C.P. Niculescu, L.-E. Persson, Convex Functions and Their Applications, volume 23 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC (Springer, New York, 2006). A contemporary approachGoogle Scholar
  38. 102.
    T. Ohno, T. Shimomura, Trudinger’s inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces. Nonlinear Anal. 106, 1–17 (2014)MathSciNetCrossRefGoogle Scholar
  39. 107.
    T. Ohno, T. Shimomura, Boundary limits of monotone Sobolev functions in Musielak-Orlicz spaces on uniform domains in a metric space. Kyoto J. Math. 57(1), 147–164 (2017)MathSciNetCrossRefGoogle Scholar
  40. 113.
    W. Orlicz, Über konjugierte Exponentenfolgen. Studia Math. 3, 200–211 (1931)CrossRefGoogle Scholar
  41. 115.
    V.D. Rădulescu, D.D. Repovš, Partial Differential Equations with Variable Exponents. Monographs and Research Notes in Mathematics (CRC Press, Boca Raton, FL, 2015). Variational methods and qualitative analysisGoogle Scholar
  42. 117.
    M.M. Rao, Z.D. Ren, Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker Inc., New York, 1991)Google Scholar
  43. 121.
    W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill Book Co., New York, 1987)zbMATHGoogle Scholar
  44. 123.
    Y. Sawano, T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over non-doubling measure spaces. Integral Transforms Spec. Funct. 25(12), 976–991 (2014)MathSciNetCrossRefGoogle Scholar
  45. 125.
    B. Wang, D. Liu, P. Zhao, Hölder continuity for nonlinear elliptic problem in Musielak–Orlicz–Sobolev space. J. Differ. Equ. 266(8), 4835–4863 (2019)CrossRefGoogle Scholar
  46. 126.
    D. Yang, Y. Liang, L.D. Ky, Real-Variable Theory of Musielak-Orlicz Hardy Spaces, volume 2182 of Lecture Notes in Mathematics (Springer, Cham, 2017)Google Scholar
  47. 129.
    V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izv. 29, 675–710, 877 (1987)CrossRefGoogle Scholar
  48. 130.
    V.V. Zhikov, On Lavrentiev’s phenomen. Rus. J. Math. Phys. 3, 249–269 (1995)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Petteri Harjulehto
    • 1
  • Peter Hästö
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland

Personalised recommendations