Skip to main content

Exit Event from a Metastable State and Eyring-Kramers Law for the Overdamped Langevin Dynamics

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

Abstract

In molecular dynamics, several algorithms have been designed over the past few years to accelerate the sampling of the exit event from a metastable domain, that is to say the time spent and the exit point from the domain. Some of them are based on the fact that the exit event from a metastable region is well approximated by a Markov jump process. In this work, we present recent results on the exit event from a metastable region for the overdamped Langevin dynamics obtained in [22, 23, 56]. These results aim in particular at justifying the use of a Markov jump process parametrized by the Eyring-Kramers law to model the exit event from a metastable region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, all the results presented in this section are proved in [22, 23] in the more general setting: \(\overline{\varOmega }=\varOmega \cup \partial \varOmega \) is a \(C^{\infty }\) oriented compact and connected Riemannian manifold of dimension d with boundary \(\partial \varOmega \).

References

  1. Aristoff, D., Lelièvre, T.: Mathematical analysis of temperature accelerated dynamics. Multiscale Model. Simul. 12(1), 290–317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berglund, N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Relat. Fields 19, 459–490 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Berglund, N.: Noise-induced phase slips, log-periodic oscillations, and the Gumbel distribution. Markov Process. Relat. Fields 22, 467–505 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Berglund, N., Gentz, B.: On the noise-induced passage through an unstable periodic orbit I: two-level model. J. Stat. Phys. 114(5–6), 1577–1618 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berglund, N., Gentz, B.: On the noise-induced passage through an unstable periodic orbit II: general case. SIAM J. Math. Anal. 46(1), 310–352 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6, 399–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7, 69–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cameron, M.: Computing the asymptotic spectrum for networks representing energy landscapes using the minimum spanning tree. Netw. Heterog. Media 9(3), 383–416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Champagnat, N., Villemonais, D.: General criteria for the study of quasi-stationarity. ArXiv preprint arXiv:1712.08092 (2017)

  10. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  11. Davies, E.B.: Dynamical stability of metastable states. J. Funct. Anal. 46(3), 373–386 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Davies, E.B.: Metastable states of symmetric Markov semigroups I. Proc. London Math. Soc. 45(3), 133–150 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davies, E.B.: Metastable states of symmetric Markov semigroups II. J. London Math. Soc. 26(3), 541–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Day, M.V.: On the exponential exit law in the small parameter exit problem. Stochastics 8(4), 297–323 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Day, M.V.: On the asymptotic relation between equilibrium density and exit measure in the exit problem. Stoch. Int. J. Probab. Stoch. Process. 12(3–4), 303–330 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Day, M.V.: Recent progress on the small parameter exit problem. Stoch. Int. J. Probab. Stoch. Process. 20(2), 121–150 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Day, M.V.: Conditional exits for small noise diffusions with characteristic boundary. Ann. Probab. 20(3), 1385–1419 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Day, M.V.: Exit cycling for the van der Pol oscillator and quasipotential calculations. J. Dyn. Diff. Equat. 8(4), 573–601 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Day, M.V.: Mathematical approaches to the problem of noise-induced exit. In: McEneaney, W.M., Yin, G.G., Zhang, Q. (eds.) Stochastic Analysis, Control, Optimization and Applications, pp. 269–287. Birkhäuser, Boston (1999)

    Chapter  Google Scholar 

  20. Devinatz, A., Friedman, A.: Asymptotic behavior of the principal eigenfunction for a singularly perturbed Dirichlet problem. Indiana Univ. Math. J. 27, 143–157 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Devinatz, A., Friedman, A.: The asymptotic behavior of the solution of a singularly perturbed Dirichlet problem. Indiana Univ. Math. J. 27(3), 527–537 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Di Gesù, G., Lelièvre, T., Le Peutrec, D., Nectoux, B.: Sharp asymptotics of the first exit point density. Ann. PDE 5(1) (2019). https://link.springer.com/journal/40818/5/1

  23. Di Gesù, G., Lelièvre, T., Le Peutrec, D., Nectoux, B.: The exit from a metastable state: concentration of the exit point distribution on the low energy saddle points. ArXiv preprint arXiv:1902.03270 (2019)

  24. Eckhoff, M.: Precise asymptotics of small eigenvalues of reversible diffusions in the metastable regime. Ann. Probab. 33(1), 244–299 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fan, Y., Yip, S., Yildiz, B.: Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in hcp Zr. J. Phys. Condens. Matter 26, 365402 (2014)

    Article  Google Scholar 

  26. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Heidelberg (1984)

    Book  MATH  Google Scholar 

  27. Galves, A., Olivieri, E., Vares, M.E.: Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15(4), 1288–1305 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gol’dshtein, V., Mitrea, I., Mitrea, M.: Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. J. Math. Sci. 172(3), 347–400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62(2), 251–342 (1990)

    Article  MathSciNet  Google Scholar 

  30. Helffer, B., Klein, M., Nier, F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Mat. Contemp. 26, 41–85 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Helffer, B., Nier, F.: Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mémoire de la Société mathématique de France 105, 1–89 (2006)

    Article  MATH  Google Scholar 

  32. Helffer, B., Sjöstrand, J.: Multiple wells in the semi-classical limit I. Comm. Partial Diff. Equat. 9(4), 337–408 (1984)

    Article  MATH  Google Scholar 

  33. Helffer, B., Sjöstrand, J.: Multiple wells in the semi-classical limit III-Interaction through non-resonant wells. Mathematische Nachrichten 124(1), 263–313 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Helffer, B., Sjöstrand, J.: Puits multiples en limite semi-classique. II. Interaction moléculaire. Symétries. Perturbation. Annales de l’IHP Physique théorique 42(2), 127–212 (1985)

    MATH  Google Scholar 

  35. Helffer, B., Sjöstrand, J.: Puits multiples en mecanique semi-classique iv etude du complexe de Witten. Comm. Partial Diff. Equat. 10(3), 245–340 (1985)

    Article  MATH  Google Scholar 

  36. Hérau, F., Hitrik, M., Sjöstrand, J.: Tunnel effect and symmetries for Kramers-Fokker-Planck type operators. J. Inst. Math. Jussieu 10(3), 567–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Holley, R.A., Kusuoka, S., Stroock, D.W.: Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83(2), 333–347 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jakab, T., Mitrea, I., Mitrea, M.: On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58(5), 2043–2071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kamin, S.: Elliptic perturbation of a first order operator with a singular point of attracting type. Indiana Univ. Math. J. 27(6), 935–952 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kamin, S.: On elliptic singular perturbation problems with turning points. SIAM J. Math. Anal. 10(3), 447–455 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kipnis, C., Newman, C.M.: The metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes. SIAM J. Appl. Math. 45(6), 972–982 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  43. Landim, C., Mariani, M., Seo, I.: Dirichlet’s and Thomson’s principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes. Arch. Ration. Mech. Anal. 231(2), 887–938 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Le Bris, C., Lelièvre, T., Luskin, M., Perez, D.: A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18(2), 119–146 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Le Peutrec, D.: Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian. Ann. Fac. Sci. Toulouse Math. (6) 19(3–4), 735–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Le Peutrec, D., Nectoux, B.: Repartition of the quasi-stationary distribution and first exit point density for a double-well potential. ArXiv preprint arXiv:1902.06304 (2019)

  47. Marcelin, R.: Contribution à l’étude de la cinétique physico-chimique. Ann. Phys. 3, 120–231 (1915)

    Article  Google Scholar 

  48. Mathieu, P.: Zero white noise limit through Dirichlet forms, with application to diffusions in a random medium. Probab. Theory Relat. Fields 99(4), 549–580 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mathieu, P.: Spectra, exit times and long time asymptotics in the zero-white-noise limit. Stochastics 55(1–2), 1–20 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Matkowsky, B.J., Schuss, Z.: The exit problem for randomly perturbed dynamical systems. SIAM J. Appl. Math. 33(2), 365–382 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  51. Matkowsky, B.J., Schuss, Z.: The exit problem: a new approach to diffusion across potential barriers. SIAM J. Appl. Math. 36(3), 604–623 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  52. Matkowsky, B.J., Schuss, Z., Ben-Jacob, E.: A singular perturbation approach to Kramers diffusion problem. SIAM J. Appl. Math. 42(4), 835–849 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  53. Michel, L.: About small eigenvalues of Witten Laplacian. Pure Appl. Anal. (2017, to appear)

    Google Scholar 

  54. Miclo, L.: Comportement de spectres d’opérateurs de Schrödinger à basse température. Bulletin des sciences mathématiques 119(6), 529–554 (1995)

    MathSciNet  MATH  Google Scholar 

  55. Naeh, T., Klosek, M.M., Matkowsky, B.J., Schuss, Z.: A direct approach to the exit problem. SIAM J. Appl. Math. 50(2), 595–627 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  56. Nectoux, B.: Analyse spectrale et analyse semi-classique pour la métastabilité en dynamique moléculaire. Ph.D. thesis, Université Paris Est (2017)

    Google Scholar 

  57. Perthame, B.: Perturbed dynamical systems with an attracting singularity and weak viscosity limits in Hamilton-Jacobi equations. Trans. Am. Math. Soc. 317(2), 723–748 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  58. Schilder, M.: Some asymptotic formulas for Wiener integrals. Trans. Am. Math. Soc. 125(1), 63–85 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  59. Schütte, C.: Conformational dynamics: modelling, theory, algorithm and application to biomolecules. Habilitation dissertation, Free University Berlin (1998)

    Google Scholar 

  60. Schütte, C., Sarich, M.: Metastability and Markov State Models in Molecular Dynamics. Courant Lecture Notes, vol. 24. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  61. Sorensen, M.R., Voter, A.F.: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys. 112(21), 9599–9606 (2000)

    Article  Google Scholar 

  62. Sugiura, M.: Metastable behaviors of diffusion processes with small parameter. J. Math. Soc. Jpn. 47(4), 755–788 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  63. Vineyard, G.H.: Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3(1), 121–127 (1957)

    Article  Google Scholar 

  64. Voter, A.F.: A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106(11), 4665–4677 (1997)

    Article  Google Scholar 

  65. Voter, A.F.: Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57(22), R13985 (1998)

    Article  Google Scholar 

  66. Voter, A.F.: Introduction to the kinetic Monte Carlo method. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds.) Radiation Effects in Solids. Springer, NATO Publishing Unit, Dordrecht (2005)

    Google Scholar 

  67. Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement number 614492.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Nectoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lelièvre, T., Le Peutrec, D., Nectoux, B. (2019). Exit Event from a Metastable State and Eyring-Kramers Law for the Overdamped Langevin Dynamics. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_9

Download citation

Publish with us

Policies and ethics