Skip to main content

Particle Transport in a Confined Ratchet Driven by the Colored Noise

  • Conference paper
  • First Online:
Book cover Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

Abstract

In this paper, we study particle transport in a confined ratchet which is constructed by combining a periodic channel with a ratchet potential under colored Gaussian noise excitation. Due to the interaction of colored noise and confined ratchet, particles host remarkably different properties in the transporting process. By means of the second-order stochastic Runge-Kutta algorithm, effects of the system parameters, including the noise intensity, colored noise correlation time and ratchet potential parameters are investigated by calculating particle current. The results reveal that the colored noise correlation time can lead to an increase of particle current. The increase of noise intensity along the horizontal or vertical direction can accelerate the particle transport in the corresponding direction but slow down the particle transport when there are the same noise intensities in both directions. For potential parameters, an increase of the slope parameter results into an increase of particle currents. The interactions of potential parameters and correlation time can induce complex particle transport phenomena, i.e. particle current increases with the increase of the potential depth parameter for a smaller asymmetric parameter and non-zero correlation time, while the tendency changes for a larger asymmetric parameter. Accordingly, suitable system parameters can be chosen to accelerate the particle transport and used to design new devices for particle transport in microscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reimann, P.: Introduction to the physics of Brownian motors. Appl. Phys. A 75(2), 169–178 (2002)

    Article  Google Scholar 

  2. Angelani, L.: Active ratchets. Europhys. Lett. 96(6), 68002 (2011)

    Article  Google Scholar 

  3. Xu, Y.: The estimates of the mean first exit time of a bistable system excited by Poisson white noise. J. Appl. Mech. 84(9), 091004 (2017)

    Article  Google Scholar 

  4. Wu, J.: Information-based measures for logical stochastic resonance in a synthetic gene network under Lévy flight superdiffusion. Chaos 27(6), 063105 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cao, L.: Fluctuation-induced transport in a spatially symmetric periodic potential. Phys. Rev. E 62(5), 7478–7871 (2000)

    Article  Google Scholar 

  6. Reimann, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2), 57–265 (2002)

    Article  MathSciNet  Google Scholar 

  7. Reimann, P.: Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 87(1), 010602 (2001)

    Article  MathSciNet  Google Scholar 

  8. Li, Y.: Lévy noise induced transport in a rough triple-well potential. Phys. Rev. E 94(4), 042222 (2016)

    Article  Google Scholar 

  9. Li, Y.: Transports in a rough ratchet induced by Lévy noises. Chaos 27(10), 103102 (2017)

    Article  MathSciNet  Google Scholar 

  10. Jung, P.: Colored noise in dynamical systems: some exact solutions. In: Stochastic Dynamics. Lecture Notes in Physics, vol. 484, pp. 23–31 (1997)

    Google Scholar 

  11. Xu, Y.: The switch in a genetic toggle system with Lévy noise. Sci. Rep. 6, 31505 (2016)

    Article  Google Scholar 

  12. Wang, Z.: Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 59(3), 371–375 (2016)

    Article  Google Scholar 

  13. Kullman, L.: Transport of maltodextrins through maltoporin: a single-channel study. Biophys. J. 82(2), 803–812 (2002)

    Article  Google Scholar 

  14. Kosinska, I.: Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model. Phys. Rev. E 77(3), 031131 (2008)

    Article  Google Scholar 

  15. Berezhkovskii, A.: Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Biophys. J. 88(3), L17–L19 (2005)

    Article  Google Scholar 

  16. Siwy, Z.: Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 94(4), 048102 (2005)

    Article  Google Scholar 

  17. Zwanzig, R.: Diffusion past an entropy barrier. J. Phys. Chem. 96(10), 3926–3930 (1992)

    Article  Google Scholar 

  18. Kalinay, P.: Corrections to the Fick-Jacobs equation. Phys. Rev. E 74(4), 041203 (2006)

    Article  MathSciNet  Google Scholar 

  19. Dorfman, K.: Assessing corrections to the Fick-Jacobs equation. J. Chem. Phys. 141(4), 044118 (2014)

    Article  Google Scholar 

  20. Reguera, D.: Entropic transport: kinetics, scaling, and control mechanisms. Phys. Rev. Lett. 96(13), 130603 (2006)

    Article  Google Scholar 

  21. Burada, P.: Biased diffusion in confined media: test of the Fick-Jacobs approximation and validity criteria. Phys. Rev. E 75(5), 051111 (2007)

    Article  Google Scholar 

  22. Reguera, D.: Entropic splitter for particle separation. Phys. Rev. Lett. 108(2), 020604 (2012)

    Article  Google Scholar 

  23. Li, Y.: Fine separation of particles via the entropic splitter. Phys. Rev. E 96(2), 022152 (2017)

    Article  Google Scholar 

  24. Ghosh, P.: Detectable inertial effects on Brownian transport through narrow pores. Europhys. Lett. 98(5), 50002 (2012)

    Article  Google Scholar 

  25. Riefler, W.: Entropic transport of finite size particles. J. Phys. Condens. Matter 22(45), 454109 (2010)

    Article  Google Scholar 

  26. Ghosh, P.: Self-propelled Janus particles in a ratchet: numerical simulations. Phys. Rev. Lett. 110(26), 268301 (2013)

    Article  Google Scholar 

  27. Li, F.: Current control in a two-dimensional channel with nonstraight midline and varying width. Phys. Rev. E 87(6), 062128 (2013)

    Article  Google Scholar 

  28. Ao, X.: Active Brownian motion in a narrow channel. Eur. Phys. J.-Spec. Top. 223(14), 3227–3242 (2014)

    Article  Google Scholar 

  29. Volkmuth, W.: DNA electrophoresis in microlithographic arrays. Nature 358(6387), 600–602 (1992)

    Article  Google Scholar 

  30. Han, J.: Separation of long DNA molecules in a microfabricated entropic trap array. Science 288(5468), 1026–1029 (2000)

    Article  Google Scholar 

  31. Chang, R.: Dynamics of chain molecules in disordered materials. Phys. Rev. Lett. 96(10), 107802 (2006)

    Article  Google Scholar 

  32. Pineda, I.: Diffusion in two-dimensional conical varying width channels: comparison of analytical and numerical results. J. Chem. Phys. 137(17), 174103 (2012)

    Article  Google Scholar 

  33. Ai, B.: Rectified Brownian transport in corrugated channels: fractional Brownian motion and Lévy flights. J. Chem. Phys. 137(17), 174101 (2012)

    Article  Google Scholar 

  34. Malgaretti, P.: Confined Brownian ratchets. J. Chem. Phys. 138(19), 194906 (2013)

    Article  Google Scholar 

  35. Short, R.: Correlation functions of a dye laser: comparison between theory and experiment. Phys. Rev. Lett. 49(9), 647–650 (1982)

    Article  Google Scholar 

  36. Kubo, R.: Fluctuation, Relaxation and Resonance in Magnetic Systems. Oliver and Boyd, Edinburgh (1962)

    Google Scholar 

  37. Reguera, D.: Kinetic equations for diffusion in the presence of entropic barriers. Phys. Rev. E 64(6), 061106 (2001)

    Article  Google Scholar 

  38. Honeycutt, R.: Stochastic Runge-Kutta algorithms. II. Colored noise. Phys. Rev. A 45(2), 604–610 (1992)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the NSF of China (11772255), the Fundamental Research Funds for the Central Universities, the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University. Y. Xu thanks to the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Mei, R., Li, Y., Kurths, J. (2019). Particle Transport in a Confined Ratchet Driven by the Colored Noise. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_15

Download citation

Publish with us

Policies and ethics