Skip to main content

Stochastic Mean-Field Dynamics and Applications to Life Sciences

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

Abstract

Although we do not intend to give a general, formal definition, the stochastic mean-field dynamics we present in these notes can be conceived as the random evolution of a system comprised by N interacting components which is: (a) invariant in law for permutation of the components; (b) such that the contribution of each component to the evolution of any other is of order \(\frac{1}{N}\). The permutation invariance clearly does not allow any freedom in the choice of the geometry of the interaction; however, this is exactly the feature that makes these models analytically treatable, and therefore attractive for a wide scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreis, L., Dai Pra, P., Fischer, M.: McKean–Vlasov limit for interacting systems with simultaneous jumps. Stochast. Anal. Appl. 36(6), 960–995 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.D.: Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(1), 10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Arous, G., Guionnet, A.: Large deviations for Langevin spin glass dynamics. Probab. Theory Relat. Fields 102(4), 455–509 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Statist. Phys. 138, 270–290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2013)

    MATH  Google Scholar 

  6. Bolley, F., Gentil, I., Guillin, A.: Uniform convergence to equilibrium for granular media. Arch. Ration. Mech. Anal. 208, 429–445 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonilla, L.L., Neu, J.C., Spigler, R.: Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Statist. Phys. 67(1–2), 313–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonilla, L.L., Pérez Vicente, C.J., Spigler, R.: Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions. Phys. D 113(1), 79–97 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Budhiraja, A., Dupuis, P., Fischer, M.: Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40(1), 1–435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardaliaguet, P., Delarue, F., Lasry, J.M., Lions, P.-L.: The master equation and the convergence problem in mean field games. arXiv preprint arXiv:1509.02505 (2015)

  11. Cattiaux, P., Guillin, A., Malrieu, F.: Probabilistic approach for granular media equations in the non-uniformly convex case. Probab. Theory Relat. Fields 140(1–2), 19–40 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Cecchin, A., Pelino, G.: Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stochast. Process. Appl. (2018). https://doi.org/10.1016/j.spa.2018.12.002

  13. Cerf, R., Gorny, M.: A Curie-Weiss model of self-organized criticality. Ann. Probab. 44(1), 444–478 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chevallier, J.: Mean-field limit of generalized Hawkes processes. Stochast. Process. Appl. 127(12), 3870–3912 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chevallier, J., Caceres, M.J., Doumic, M., Reynaud-Bouret, P.: Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25(14), 2669–2719 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chevallier, J., Duarte, A., Löcherbach, E., Ost, G.: Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochast. Process. Appl. 129(1), 1–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab. 26, 1–40 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Collet, F., Dai Pra, P., Formentin, M.: Collective periodicity in mean-field models of cooperative behavior. NoDEA Nonlinear Differ. Equ. Appl. 22(5), 1461–1482 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a geometric long-range interacting model. Comm. Math. Phys. 118, 531–567 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dai Pra, P., den Hollander, F.: McKean-Vlasov limit for interacting random processes in random media. J. Statist. Phys. 84(3–4), 735–772 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dai Pra, P., Tovazzi, D.: The dynamics of critical fluctuations in asymmetric Curie–Weiss models. Stochast. Process. Appl. 129(3), 1060–1095 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Statist. Phys. 31(1), 29–85 (1983)

    Article  MathSciNet  Google Scholar 

  23. Dawson, D.A., Gartner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20, 247–308 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Del Moral, P., Rio, E.: Concentration inequalities for mean field particle models. Ann. Appl. Probab. 21, 1017–1052 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ditlevsen, S., Löcherbach, E.: Multi-class oscillating systems of interacting neurons. Stochast. Process. Appl. 127(6), 1840–1869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fernandez, B., Méléard, S.: A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stochast. Process. Appl. 71(1), 33–53 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Giacomin, G., Luçon, E., Poquet, C.: Coherence stability and effect of random natural frequencies in populations of coupled oscillators. J. Dyn. Diff. Equat. 26(2), 333–367 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Giacomin, G., Poquet, C., Shapira, A.: Small noise and long time phase diffusion in stochastic limit cycle oscillators. J. Diff. Equat. 264(2), 1019–1049 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Graham, C.: Nonlinear diffusion with jumps. Annales de l’I.H.P. Probabilités et statistiques 28(3), 393–402 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Jourdain, B., Méléard, S.: Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Statist. 34(6), 727–766 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Krupa, M., Touboul, J.D.: Complex oscillations in the delayed FitzHugh-Nagumo equation. J. Nonlinear Sci. 26(1), 43–81 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Courier Dover Publications, New York (2003)

    MATH  Google Scholar 

  34. Lasry, J.M., Lions, P.-L.: Jeux à champ moyen I. le cas stationnaire. C.R. Acad. Sci. Paris 343(9), 619–625 (2006)

    Google Scholar 

  35. Lindner, B., Garca Ojalvo, A., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Google Scholar 

  36. Luçon, E.: Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16, 792–829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luçon, E.: Oscillateurs couplés, désordre et synchronisation. Diss. Université Pierre et Marie Curie-Paris VI (2012)

    Google Scholar 

  38. Luçon, E.: Quenched large deviations for interacting diffusions in random media. J. Stat. Phys. 166(6), 1405–1440 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Luçon, E., Poquet, C.: Emergence of oscillatory behaviors for excitable systems with noise and mean-field interaction, a slow-fast dynamics approach. arXiv preprint arXiv:1802.06410 (2018)

  40. Malrieu, F.: Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stochast. Process. Appl. 95, 109–132 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mischler, S., Quiñinao, C., Touboul, J.: On a kinetic Fitzhugh-Nagumo model of neuronal network. Commun. Math. Phys. 342(3), 1001–1042 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Protter, P.: Stochastic differential equations. In: Stochastic Integration and Differential Equations, pp. 187–284. Springer, Heidelberg (2005)

    Chapter  MATH  Google Scholar 

  43. Quiñinao, C., Touboul, J.: Limits and dynamics of randomly connected neuronal networks. Acta Applicandae Mathematicae 136(1), 167–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Quiñinao, C., Touboul, J.D.: Clamping and Synchronization in the strongly coupled FitzHugh-Nagumo model. arXiv:1804.06758v3, April 2018

  45. Scheutzow, M.: Noise can create periodic behavior and stabilize nonlinear diffusions. Stoch. Proc. Appl. 20, 323–331 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’Eté de Probabilités de Saint-Flour XIX–1989, pp. 165–251. Springer (1991)

    Google Scholar 

  47. Veretennikov, A.Y.: On ergodic measures for McKean-Vlasov stochastic equations. In: Monte Carlo and Quasi-Monte Carlo Methods, pp. 471–486 (2006)

    Google Scholar 

  48. Touboul, J.D.: Limits and dynamics of stochastic neuronal networks with random heterogeneous delays. J. Stat. Phys. 149(4), 569–597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Salhi, J., MacLaurin, J., Toumi, S.: On uniform propagation of chaos. Stochastics 90(1), 49–60 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The author is grateful to an anonymous referee for his careful reading and the useful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Dai Pra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai Pra, P. (2019). Stochastic Mean-Field Dynamics and Applications to Life Sciences. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_1

Download citation

Publish with us

Policies and ethics