Skip to main content

Electric Load Forecasting Based on Sparse Representation Model

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11204))

Included in the following conference series:

  • 697 Accesses

Abstract

Accurate electric load forecasting can prevent the waste of power resources and plays a crucial role in smart grid. The time series of electric load collected by smart meters are non-linear and non-stationary, which poses a great challenge to the traditional forecasting methods. In this paper, sparse representation model (SRM) is proposed as a novel approach to tackle this challenge. The main idea of SRM is to obtain sparse representation coefficients by the training set and the part of over-complete dictionary, and the rest part of over-complete dictionary multiplied with sparse representation coefficients can be used to predict the future load value. Experimental results demonstrate that SRM is capable of forecasting the complex electric load time series effectively. It outperforms some popular machine learning methods such as Neural Network, SVM, and Random Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, J., Xu, C., Zhang, Z., Li, X.: Electric load forecasting in smart grids using long-short-term-memory based recurrent neural network. In: Information Sciences and Systems. IEEE (2017)

    Google Scholar 

  2. Ertugrul, Ö.F.: Forecasting electricity load by a novel recurrent extreme learning machines approach. Int. J. Electr. Power Energy Syst. 78, 429–435 (2016)

    Article  Google Scholar 

  3. Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. IEEE Access 3, 490–530 (2015)

    Article  Google Scholar 

  4. Alfares, H., Nazeeruddin, M.: Electric load forecasting: literature survey and classification of methods. Int. J. Syst. Sci. 33(1), 23–34 (2002)

    Article  Google Scholar 

  5. Weron, R.: Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach, vol. 403. Wiley, Hoboken (2007)

    Google Scholar 

  6. Raza, M.Q., Khosravi, A.: A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 50, 1352–1372 (2015)

    Article  Google Scholar 

  7. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  8. Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time series forecasting using restricted Boltzmann machine. In: Huang, D.S., Gupta, P., Zhang, X., Premaratne, P. (eds.) ICIC 2012. CCIS, vol. 304, pp. 17–22. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31837-5_3

    Chapter  Google Scholar 

  9. Busseti, E., Osband, I., Wong, S.: Deep learning for time series modeling. Technical report, Stanford University (2012)

    Google Scholar 

  10. Xiao, L., Wang, J., Yang, X., Xiao, L.: A hybrid model based on data preprocessing for electrical power forecasting. Int. J. Electr. Power Energy Syst. 64(64), 311–327 (2015)

    Article  Google Scholar 

  11. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Comput. 12(2), 337–365 (2000)

    Article  Google Scholar 

  12. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)

    Article  MathSciNet  Google Scholar 

  13. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Article  Google Scholar 

  14. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: 1993 Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44. IEEE (1993)

    Google Scholar 

  15. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  16. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Commun. Pure Appl. Math. 59(6), 797–829 (2006)

    Article  MathSciNet  Google Scholar 

  17. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  18. Qayyum, A., et al.: Designing of overcomplete dictionaries based on DCT and DWT. In: Biomedical Engineering & Sciences, pp. 134–139. IEEE (2016)

    Google Scholar 

  19. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  20. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  21. Ma, J., Plonka, G.: The curvelet transform. IEEE Signal Process. Mag. 27(2), 118–133 (2010)

    Article  Google Scholar 

  22. Lewis, J.J., O’Callaghan, R.J., Nikolov, S.G., Bull, D.R., Canagarajah, N.: Pixel- and region-based image fusion with complex wavelets. Inf. Fusion 8(2), 119–130 (2007)

    Article  Google Scholar 

  23. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisc. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  24. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 2443–2446. IEEE (1999)

    Google Scholar 

  25. Aharon, M., Elad, M., Bruckstein, A.: k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Key R&D Program of China under Grant No. 2017YFB1002000; the National Natural Science Foundation of China under Grant No. 61772136, 61672159, 61772005; the Technology Innovation Platform Project of Fujian Province under Grant No. 2014H2005; the Research Project for Young and Middle-aged Teachers of Fujian Province under Grant No. JT180045; the Fujian Collaborative Innovation Center for Big Data Application in Governments; the Fujian Engineering Research Center of Big Data Analysis and Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, F., Zheng, X., Yu, Z., Yang, G., Guo, W. (2019). Electric Load Forecasting Based on Sparse Representation Model. In: Li, S. (eds) Green, Pervasive, and Cloud Computing. GPC 2018. Lecture Notes in Computer Science(), vol 11204. Springer, Cham. https://doi.org/10.1007/978-3-030-15093-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15093-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15092-1

  • Online ISBN: 978-3-030-15093-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics