Dual World Network Model Based Social Information Competitive Dissemination

  • Ze-lin Zang
  • Jia-hui Li
  • Ling-yun Xu
  • Xu-sheng KangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11204)


The study of the competitive dissemination of various social information is of great significance to product marketing, political competition, and public opinion. Based on the existing small-world network model, this paper establishes a dual world network model that combines geographical factors to describe the information dissemination in society from two aspects of human relations and geographical relations. In addition, in order to describe the competitive relationship of a variety of opinions, the Opinion Acceptance Rules (OAR) were designed and simulated in the MATLAB environment. Therefore, this paper proves a lot of communication phenomena such as information explosion, information balance, and information island.


Competitive dissemination Various social information Dual world network 


  1. 1.
    Del Vicario, M., et al.: The spreading of misinformation online. Proc. Natl. Acad. Sci. 113(3), 554–559 (2016)CrossRefGoogle Scholar
  2. 2.
    Lokot, T., Diakopoulos, N.: News bots: automating news and information dissemination on twitter. Digit. Journal. 4(6), 682–699 (2016)CrossRefGoogle Scholar
  3. 3.
    Zhou, X., Wu, B., Jin, Q.: User role identification based on social behavior and networking analysis for information dissemination. Futur. Gener. Comput. Syst. 117, 107–117 (2017)Google Scholar
  4. 4.
    Househ, M.: Communicating ebola through social media and electronic news media outlets: a cross-sectional study. Health Inform. J. 22(3), 470–478 (2016)CrossRefGoogle Scholar
  5. 5.
    Yap, H.-Y., Lim, T.-M.: Trusted social node: evaluating the effect of trust and trust variance to maximize social influence in a multilevel social node influential diffusion model. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9789, pp. 530–542. Springer, Cham (2016). Scholar
  6. 6.
    Karumanchi, G., Muralidharan, S., Prakash, R.: Information dissemination in partitionable mobile ad hoc networks. In: Proceedings of the 18th IEEE Symposium on Reliable Distributed Systems 1999, pp. 4–13. IEEE (1999)Google Scholar
  7. 7.
    Ryan, J.O.: Method and system for audio information dissemination using various modes of transmission, 4 June 1996. US Patent 5,524,051Google Scholar
  8. 8.
    Nascimento, A.M., Da Silveira, D.S.: A systematic mapping study on using social media for business process improvement. Comput. Hum. Behav. 73, 670–675 (2017)CrossRefGoogle Scholar
  9. 9.
    Cornand, C., Heinemann, F.: Optimal degree of public information dissemination. Econ. J. 118(528), 718–742 (2008)CrossRefGoogle Scholar
  10. 10.
    Shan, S., Liu, M., Xiaobo, X.: Analysis of the key influencing factors of haze information dissemination behavior and motivation in WeChat. Inf. Discov. Deliv. 45(1), 21–29 (2017)Google Scholar
  11. 11.
    Shulgin, B., Stone, L., Agur, Z.: Pulse vaccination strategy in the sir epidemic model. Bull. Math. Biol. 60(6), 1123–1148 (1998)CrossRefGoogle Scholar
  12. 12.
    Ruths, D., Ruths, J.: Estimating the minimum control count of random network models. Sci. Rep. 6, 19818 (2016)CrossRefGoogle Scholar
  13. 13.
    Pennings, P.S., Holmes, S.P., Shafer, R.W.: HIV-1 transmission networks in a small world. J. Infect. Dis. 209(2), 180 (2014)CrossRefGoogle Scholar
  14. 14.
    Watts, D.J.: Small-World Networks in the Oxford Handbook on the Economics of Networks. Oxford University Press, Oxford (2016)Google Scholar
  15. 15.
    Bassett, D.S., Bullmore, E.T.: Small-world brain networks revisited. Neurosci. 23(5), 499–516 (2017)Google Scholar
  16. 16.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, M., Li, D., Qin, P., Liu, C., Wang, H., Wang, F.: Epidemics in interconnected small-world networks. PLoS ONE 10(3), e0120701 (2015)CrossRefGoogle Scholar
  18. 18.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)CrossRefGoogle Scholar
  19. 19.
    Shu, W., Chuang, Y.-H.: The perceived benefits of six-degree-separation social networks. Internet Res. 21(1), 26–45 (2011)CrossRefGoogle Scholar
  20. 20.
    Sullivan, B.N., Tang, Y., Marquis, C.: Persistently learning: how small-world network imprints affect subsequent firm learning. Strat. Organ. 12(3), 180–199 (2014)CrossRefGoogle Scholar
  21. 21.
    Erkaymaz, O., Ozer, M.: Impact of small-world network topology on the conventional artificial neural network for the diagnosis of diabetes. Chaos, Solitons Fractals 83, 178–185 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Xu, Q., Su, Z., Zhang, K., Ren, P., Shen, X.S.: Epidemic information dissemination in mobile social networks with opportunistic links. IEEE Trans. Emerg. Top. Comput. 3(3), 399–409 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Lei, C., Yingcheng, X., Yang, Y., Shan, S., Xiaobo, X.: An information dissemination model of product quality and safety based on scale- free networks. Inf. Technol. Manag. 15(3), 211–221 (2014)CrossRefGoogle Scholar
  24. 24.
    Lima, A., De Domenico, M., Pejovic, V., Musolesi, M.: Disease containment strategies based on mobility and information dissemination. Sci. Rep. 5, 10650 (2015)CrossRefGoogle Scholar
  25. 25.
    Wei, J., Bu, B., Guo, X., Gollagher, M.: The process of crisis information dissemination: impacts of the strength of ties in social networks. Kybernetes 43(2), 178–191 (2014)CrossRefGoogle Scholar
  26. 26.
    Pietrucha, F.J.: Supercommunicator: Explaining the Complicated So Anyone Can Understand. AMACOM Div American Mgmt Assn, New York City (2014)Google Scholar
  27. 27.
    Chowell, G., Viboud, C., Hyman, J.M., Simonsen, L.: The western africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. PLoS Curr. 7 (2015).
  28. 28.
    Hodas, N.O., Lerman, K.: The simple rules of social contagion. Sci. Rep. 4, 4343 (2014)CrossRefGoogle Scholar
  29. 29.
    Zhou, D., Han, W.-B., Wang, Y.-J.: Social network information transmission model based on node and information characteristics. J. Integr. Plant Biol. 52(1), 156–166 (2015)Google Scholar
  30. 30.
    Zhang, S., Luo, X., Xuan, J., Chen, X., Xu, W.: Discovering small-world in association link networks for association learning. World Wide Web 17(2), 229–254 (2014)CrossRefGoogle Scholar
  31. 31.
    Romeu, J.L.: Statistical methods for communication science (2006)Google Scholar
  32. 32.
    Li, J., Zhoua, Q., Zheng, X., Moga, L.M., Neculita, M.: Influencing factors of rural human consumption in china. Econ. Appl. Inform. 20(3), 117–127 (2014). Annals of the University Dunarea de Jos of Galati: Fascicle: IGoogle Scholar
  33. 33.
    Stone, T.E., McKay, S.R.: Majority-vote model on a dynamic small-world network. Phys. A Stat. Mech. Appl. 419, 437–443 (2015)CrossRefGoogle Scholar
  34. 34.
    Jones, C., Hesterly, W.S., Borgatti, S.P.: A general theory of network governance: exchange conditions and social mechanisms. Acad. Manag. Rev. 22(4), 911–945 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ze-lin Zang
    • 1
    • 2
  • Jia-hui Li
    • 1
  • Ling-yun Xu
    • 1
  • Xu-sheng Kang
    • 1
    Email author
  1. 1.School of Computer and Computing ScienceZhejiang University City CollegeHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations