Skip to main content

Recent Advances in Imaging and Radiology in Orthopedics

  • Chapter
  • First Online:
General Principles of Orthopedics and Trauma

Abstract

Radiological imaging is an essential component of the routine evaluation of patients with musculoskeletal disorders. A variety of imaging modalities can be utilized to ensure that a correct diagnosis is reached, and the patient is put on an appropriate treatment path. In recent years, significant technological advances have been made in imaging and specific applications developed for assessing the orthopedic patient. These recent advances show promise in increasing our molecular, functional, and structural understanding of pathological processes in the musculoskeletal setting.

In this chapter, we review the different imaging modalities and their applications in orthopedics. Recent advances in musculoskeletal imaging are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen DM, Iddins CJ, Sugarman SL. Ionizing radiation injuries and illnesses. Emerg Med Clin North Am. 2014;32(1):245–65. https://doi.org/10.1016/j.emc.2013.10.002.

    Article  PubMed  Google Scholar 

  2. Ionising radiation (medical exposure) regulations 2017.

    Google Scholar 

  3. Ionising radiations regulations 2017.

    Google Scholar 

  4. Stewart AG, Ewan PW. The incidence, aetiology and management of anaphylaxis presenting to an accident and emergency department. QJM. 1996;89:859–64.

    Article  CAS  PubMed  Google Scholar 

  5. Fan YF, Chong VFH. MRI findings in failed back syndrome. 1995. http://www.e-mjm.org/1995/v50n1/Failed_Back_Surgery_Syndrome.pdf.

  6. Khawaja AZ, Cassidy DB, Al Shakarchi J, McGrogan DG, Inston NG, Jones RG. Revisiting the risks of MRI with gadolinium based contrast agents—review of literature and guidelines. Insights Imaging. 2015;6(5):553–8. https://doi.org/10.1007/s13244-015-0420-2.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ranga A, Agarwal Y, Garg KJ. Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging. 2017;27(2):141–7. https://doi.org/10.4103/0971-3026.209212.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.

    Article  PubMed  Google Scholar 

  9. Horsfield D, Murphy G. Stress views of the ankle joint in lateral ligament injury. Radiography. 1985;51:7–11.

    CAS  PubMed  Google Scholar 

  10. Siddiqui NA, Galizia MS, Almusa E, Omar IM. Evaluation of the tarsometatarsal joint using conventional radiography CT, and MR imaging. Radiographics. 2014;34:514–31.

    Article  PubMed  Google Scholar 

  11. Nikolaou VS, Malahias MA, Kaseta MK, Sourlas I, Babis GC. Comparative clinical study of ultrasound-guided A1 pulley release vs. pen surgical intervention in the treatment of trigger finger. World J Orthop. 2017;8:163–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taylor PC. VEGF and imaging of vessels in rheumatoid arthritis. Arthritis Res. 2002;4(Suppl 3):S99–S107. https://doi.org/10.1186/ar582.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fredberg U, Stengaard-Pedersen K. Chronic tendinopathy tissue pathology, pain mechanisms, and etiology with a special focus on inflammation. Scand J Med Sci Sports. 2008;18:3–15. https://doi.org/10.1111/j.1600-0838.2007.00746.x.

    Article  CAS  Google Scholar 

  14. Babcock DS, Patriquin H, LaFortune M, Dauzat M. Power Doppler sonography: basic principles and clinical applications in children. Pediatr Radiol. 1996;26(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  15. Chang K-V, Lew HL, Wang T-G, Chen W-S. Use of contrast-enhanced ultrasonography in musculoskeletal medicine. Am J Phys Med Rehabil. 2012;91(5):449–57. https://doi.org/10.1097/phm.0b013e31823caaa3.

    Article  PubMed  Google Scholar 

  16. Lin CY, Ooi CC, Chan E, Chew KT. Emerging technological advances in musculoskeletal ultrasound. PMR. 2018;10(1):112–9.

    Article  Google Scholar 

  17. Ohrndorf S, Hensch A, Naumann L, et al. Contrast-enhanced ultrasonography is more sensitive than grayscale and power Doppler ultrasonography compared to MRI in therapy monitoring of rheumatoid arthritis patients. Ultraschall Med. 2011;32(Suppl 2):E38–44.

    Article  PubMed  Google Scholar 

  18. Klauser A, Demharter J, De Marchi A, et al. Contrast enhanced gray-scale sonography in assessment of joint vascularity in rheumatoid arthritis: results from the IACUS study group. Eur Radiol. 2005;15:2404–10.

    Article  PubMed  Google Scholar 

  19. De Marchi A, Prever EB, Cavallo F, et al. Perfusion pattern and time of vascularisation with CEUS increase accuracy in differentiating between benign and malignant tumours in 216 musculoskeletal soft tissue masses. Eur J Radiol. 2015;84:142–50.

    Article  PubMed  Google Scholar 

  20. Cadet ER, Adler RS, Gallo RA, et al. Contrast-enhanced ultrasound characterization of the vascularity of the repaired rotator cuff tendon: short-term and intermediate-term follow-up. J Shoulder Elb Surg. 2012;21:597–603.

    Article  Google Scholar 

  21. Weber MA, Krix M, Jappe U, Huttner HB, Hartmann M, Meyding-Lamade U, Essig M, Fiehn C, Kauczor HU, Delorme S, et al. Pathologic skeletal muscle perfusion in patients with myositis: Detection with quantitative contrast-enhanced US-initial results. Radiology. 2006;238:640–9.

    Article  PubMed  Google Scholar 

  22. Weber MA, Jappe U, Essig M, et al. Contrast-enhanced ultrasound in dermatomyositis and polymyositis. J Neurol. 2006;253:1625. https://doi.org/10.1007/s00415-006-0318-5.

    Article  PubMed  Google Scholar 

  23. Lim A, Satchithananda K, Abraham S, Dick E, Cosgrove D. Superb microvascular imaging (SMI) and detection of low grade musculoskeletal inflammation. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago IL, 2014. Available at http://archive.rsna.org/2014/14007205.html.

  24. SteveMcNally.anz.medical.canon/wpcontent/uploads/sites/17/2016/09/SMI-%E2%80%93-A-New-Tool-for-the-Sports-Physician.pdf.

    Google Scholar 

  25. Chen J, Chen L, Wu L, et al. Value of superb microvascular imaging ultrasonography in the diagnosis of carpal tunnel syndrome: compared with color doppler and power doppler. Medicine. 2017;96(21):e6862. https://doi.org/10.1097/MD.0000000000006862.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ooi CC, Malliaras P, Schneider ME, Connell DA. “Soft, hard, or, just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol. 2014;43:1–12.

    Article  CAS  Google Scholar 

  27. Ooi CC, Schneider ME, Malliaras P, et al. Sonoelastography of the Achilles tendon: prevalence and prognostic value among asymptomatic elite Australian rules football players. Clin J Sport Med. 2016;26:299–306.

    Article  PubMed  Google Scholar 

  28. Tan S, Kudas S, Ozcan AS, et al. Real-time sonoelastography of the Achilles tendon: pattern description in healthy subjects and patients with surgically repaired complete ruptures. Skelet Radiol. 2012;41:1067–72.

    Article  Google Scholar 

  29. Taljanovic MS, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855–70.

    Article  PubMed  Google Scholar 

  30. Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn Achilles tendons: a pilot study. J Ultrasound Med. 2013;32:449–55.

    Article  PubMed  Google Scholar 

  31. Kijima H, Minagawa H, Yamamoto N, et al. Three-dimensional ultrasonography of shoulders with rotator cuff tears. J Orthop Sci. 2008;13:510–3.

    Article  PubMed  Google Scholar 

  32. Huang Q, Zeng Z. A review on real-time 3D ultrasound imaging technology. Biomed Res Int. 2017;2017:20. https://doi.org/10.1155/2017/6027029.

    Article  Google Scholar 

  33. Washburn N, Onishi K, Wang J. Ultrasound elastography and ultrasound tissue characterisation for tendon evaluation. J Orthop Translat. 2018;15:9–20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Klauser AS, De Zordo T, Feuchtner GM, et al. Fusion of real-time US with CT images to guide sacroiliac joint injection in vitro and in vivo. Radiology. 2010;256:547–53.

    Article  PubMed  Google Scholar 

  35. Burke CJ, Bencardino J, Adler R. The potential use of ultrasound-magnetic resonance imaging fusion applications in musculoskeletal intervention. J Ultrasound Med. 2017;36:217–24.

    Article  PubMed  Google Scholar 

  36. The Associated Press. Report links increased cancer risk to CT scans. New York: New York Times; 2007. p. 29.

    Google Scholar 

  37. Khamsi R. NewScientist.com News Service. May 11, 2007. CT scan radiation can equal nuclear bomb exposure.

  38. McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J. Strategies for reducing radiation dose in CT. Radiol Clin N Am. 2009;47(1):27–40. https://doi.org/10.1016/j.rcl.2008.10.006.

    Article  PubMed  Google Scholar 

  39. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281:690–707.

    Article  PubMed  Google Scholar 

  40. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  41. Guggenberger R, Gnannt R, Hodler J, et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle; comparison with MR imaging. Radiology. 2012;264(1):164–73.

    Article  PubMed  Google Scholar 

  42. Ai S, Qu M, Glazebrook KN, et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skelet Radiol. 2014;43(9):1289–95.

    Article  Google Scholar 

  43. Wang CK, Tsai JM, Chuang MT, Wang MT, Huang KY, Lin RM. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology. 2013;269(2):525–33.

    Article  PubMed  Google Scholar 

  44. Yu L, Christner JA, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371–9. https://doi.org/10.1118/1.3658568.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Meinel FG, Bischoff B, Zhang Q, Bamberg F, Reiser MF, Johnson TR. Metal artifact reduction by dual-energy computed tomography using energetic extrapolation: a systematically optimized protocol. Investig Radiol. 2012;47(7):406–14.

    Article  Google Scholar 

  46. Sun C, Miao F, Wang XM, et al. An initial qualitative study of dual-energy CT in the knee ligaments. Surg Radiol Anat. 2008;30(5):443–7.

    Article  PubMed  Google Scholar 

  47. Peltola EK, Koskinen SK. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma. Skelet Radiol. 2015;44:1295–301.

    Article  Google Scholar 

  48. Mallinson PI, Stevens C, Reisinger C, Nicolaou S, Munk PL, Ouellette H. Achilles tendinopathy and partial tear diagnosis using dual-energy computed tomography collagen material decomposition application. J Comput Assist Tomogr. 2013;37(3):475–7.

    Article  PubMed  Google Scholar 

  49. Zheng S, Dong Y, Miao Y, et al. Differentiation of osteolytic metastases and Schmorl’s nodes in cancer patients using dual-energy CT: advantage of spectral CT imaging. Eur J Radiol. 2014;83(7):1216–21.

    Article  PubMed  Google Scholar 

  50. Thomas C, Schabel C, Krauss B, et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR. 2015;204:324–31.

    Article  Google Scholar 

  51. Desai MA, Peterson JJ, Garner HW, Kransdorf MJ. Clinical utility of dual-energy CT for evaluation of tophaceous gout. Radiographics. 2011;31:1365–75.

    Article  PubMed  Google Scholar 

  52. Posadzy M, Desimpel J, Vanhoenacker F. Cone beam CT of the musculoskeletal system: clinical applications. Insights Imaging. 2018;9(1):35–45. https://doi.org/10.1007/s13244-017-0582-1.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Vande Berg BC, Lecouvet FE, Poilvache P, et al. Dual-detector spiral CT arthrography of the knee: accuracy for detection of meniscal abnormalities and unstable meniscal tears. Radiology. 2000;216(3):851–7.

    Article  CAS  PubMed  Google Scholar 

  54. Nishii T, Tanaka H, Nakanishi K, Sugano N, Miki H, Yoshikawa H. Fat-suppressed 3D spoiled gradient-echo MRI and MDCT arthrography of articular cartilage in patients with hip dysplasia. AJR Am J Roentgenol. 2005;185(2):379–85.

    Article  PubMed  Google Scholar 

  55. Subhas N, Freire M, Primak AN, et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skelet Radiol. 2010;39(10):1025–31.

    Article  Google Scholar 

  56. Paunipagar BK, Rasalkar D. Imaging of articular cartilage. Indian J Radiol Imaging. 2014;24(3):237–48. https://doi.org/10.4103/0971-3026.137028.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gold GE, Chen CA, Hargreaves BA, Bangerter NK. Recent advances in MRI of articular cartilage. Am J Roentgenol. 2009;193:628–38.

    Article  Google Scholar 

  58. Herneth AM, Philipp MO, Naude J, et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology. 2002;225:889–94.

    Article  PubMed  Google Scholar 

  59. Raya JG, Dietrich O, Reiser MF, Baur-Melnyk A. Methods and applications of diffusion imaging of vertebral bone marrow. J Magn Reson Imaging. 2006;24:1207–20.

    Article  PubMed  Google Scholar 

  60. Byun WM, Shin SO, Chang Y, Lee SJ, Finsterbusch J, Frahm J. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–12.

    PubMed  PubMed Central  Google Scholar 

  61. Ballon D, Dyke J, Schwartz LH, Lis E, Schneider E, Lauto A, et al. Bone marrow segmentation in leukemia using diffusion and T (2) weighted echo planar magnetic resonance imaging. NMR Biomed. 2000;13(6):321–8.

    Article  CAS  PubMed  Google Scholar 

  62. Gutzeit A, Doert A, Froehlich JM, Eckhardt BP, Meili A, Scherr P, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skelet Radiol. 2010;39(4):333–43.

    Article  Google Scholar 

  63. Oka K, Yakushiji T, Sato H, Yorimitsu S, Hayashida Y, Yamashita Y, et al. Ability of diffusion-weighted imaging for the differential diagnosis between chronic expanding hematomas and malignant soft tissue tumors. J Magn Reson Imaging. 2008;28(5):1195–200.

    Article  PubMed  Google Scholar 

  64. Khoo MM, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skelet Radiol. 2011;40:665–81.

    Article  Google Scholar 

  65. Budzik J-F, Balbi V, Verclytte S, Pansini V, et al. Diffusion tensor imaging in musculoskeletal disorders. Radiographics. 2014;34(3):E56–72.

    Article  PubMed  Google Scholar 

  66. Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch Phys Med Rehabil. 2002;83:1530–6.

    Article  PubMed  Google Scholar 

  67. McCullough MB, Domire ZJ, Reed AM, Amin S, Ytterberg SR, Chen Q, An KN. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve. 2011;43(4):585–90.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Heers G, Jenkyn T, Dresner MA, Klein MO, Basford JR, Kaufman KR, Ehman RL, An KN. Measurement of muscle activity with magnetic resonance elastography. Clin Biomech (Bristol, Avon). 2003;18(6):537–42.

    Article  PubMed  Google Scholar 

  69. Bensamoun SF, Ringleb SI, Chen Q, Ehman RL, An KN, Brennan MJ. Thigh muscle stiffness assessed with magnetic resonance elastography in hyperthyroid patients before and after medical treatment. Magn Reson Imaging. 2007;26(3):708–13.

    Article  Google Scholar 

  70. Brauck K, Galbán CJ, Maderwald S, Herrmann BL, Ladd M. Changes in calf muscle elasticity in hypogonadal males before and after testosterone substitution as monitored by magnetic resonance elastography. Eur J Endocrinol. 2007;156(6):673–8.

    Article  CAS  PubMed  Google Scholar 

  71. Simpfendorfer CS, Ilaslan H, Davies AM, et al. Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvic and appendicular skeleton. Skelet Radiol. 2008;37:797–804.

    Article  CAS  Google Scholar 

  72. Zajick DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology. 2005;237(2):590–6.

    Article  PubMed  Google Scholar 

  73. Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out- of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol. 1997;169:1439–47.

    Article  CAS  PubMed  Google Scholar 

  74. Ragab Y, Emad Y, Gheita T, et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift {in-phase and out-of phase} MR imaging. Eur J Radiol. 2009;72:125–33.

    Article  PubMed  Google Scholar 

  75. Fayad LM, Barker PB, Bluemke DA. Molecular characterization of musculoskeletal tumors by proton MR spectroscopy. Semin Musculoskelet Radiol. 2007;11:240–5.

    Article  PubMed  Google Scholar 

  76. Subhawong TK, Wang X, Durand DJ, Jacobs MA, Carrino JA, Machado AJ, et al. Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol. 2012;198:162–72.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Subhawong TK, Wang X, Machado AJ, Mammen AL, Christopher-Stine L, Barker PB, et al. 1H Magnetic resonance spectroscopy findings in idiopathic inflammatory myopathies at 3 T: feasibility and first results. Investig Radiol. 2013;48:509–16.

    Article  CAS  Google Scholar 

  78. Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC, et al. Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology. 2004;233(2):493–502.

    Article  PubMed  Google Scholar 

  79. Tokuda O, Hayashi N, Taguchi K, et al. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skelet Radiol. 2005;34(10):632–8.

    Article  Google Scholar 

  80. Kajihara M, Sugawara Y, Sakayama K, et al. Evaluation of tumor blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy-work in progress. Radiat Med. 2007;25(3):94–105.

    Article  PubMed  Google Scholar 

  81. Drapé JL. Advances in magnetic resonance imaging of musculoskeletal tumours. Orthop Traumatol Surg Res. 2013;99:S115–23.

    Article  PubMed  Google Scholar 

  82. Neto FJM, Filho ENK, Miranda FC, Rosemberg LA, Santos DCB, Taneja AK. Demystifying MR neurography of the lumbosacral plexus: from protocols to pathologies. Biomed Res Int. 2018;2018:20.

    Google Scholar 

  83. Petchprapa CN, Rosenberg ZS, Sconfienza LM, Cavalcanti CFA, la Rocca Vieira R, Zember JS. MR imaging of entrapment neuropathies of the lower extremity: part 1. the pelvis and hip. Radiographics. 2010;30(4):983–1000.

    Article  PubMed  Google Scholar 

  84. Jarvik JG, Kliot M, Maravilla KR. MR nerve imaging of the wrist and hand. Hand Clin. 2000;16:13–24.

    CAS  PubMed  Google Scholar 

  85. Dessouky R, Khaleel M, Khalifa DN, et al. MR neurography of lumbosacral plexus in failed back surgery syndrome. Spine. 2018;43(12):839–47.

    Article  PubMed  Google Scholar 

  86. Fller AG, Haynes J, Jordan SE, et al. Sciatica of nondisc origin and piriformis syndrome: diagnosis by magnetic resonance neurography and interventional magnetic resonance imaging with outcome study of resulting treatment. J Neurosurg Spine. 2005;2:99–115.

    Article  Google Scholar 

  87. Baur-Melnyk A, Buhmann S, Becker C, Schoenberg SO, Lang N, Bartl R, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008;190:1097–104.

    Article  PubMed  Google Scholar 

  88. Lauenstein TC, Goehde SC, Herborn CU, et al. Whole-body MR imaging: evaluation of patients for metastases. Radiology. 2004;233(1):139–48.

    Article  PubMed  Google Scholar 

  89. Lecouvet FE, Geukens D, Stainier A, et al. Magnetic resonance imaging of the axial skeleton for detecting bone metastases in patients with high-risk prostate cancer: diagnostic and cost-effectiveness and comparison with current detection strategies. J Clin Oncol. 2007;25(22):3281–7.

    Article  PubMed  Google Scholar 

  90. Gutzeit A, Doert A, Froehlich JM, et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skelet Radiol. 2010;39(4):333–43.

    Article  Google Scholar 

  91. Malattia C, Damasio MB, Madeo A, et al. Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis. 2014;73(6):1083–90.

    Article  PubMed  Google Scholar 

  92. Althoff CE, Sieper J, Song IH, et al. Active inflammation and structural change in early active axial spondyloarthritis as detected by whole-body MRI. Ann Rheum Dis. 2013;72(6):967–73.

    Article  PubMed  Google Scholar 

  93. Carmona R, Harish S, Linda DD, Ioannidis G, Matsos M, Khalidi NA. MR imaging of the spine and sacroiliac joints for spondyloarthritis: influence on clinical diagnostic confidence and patient management. Radiology. 2013;269(1):208–15.

    Article  PubMed  Google Scholar 

  94. Weckbach S, Schewe S, Michaely HJ, Steffinger D, Reiser MF, Glaser C. Whole-body MR imaging in psoriatic arthritis: additional value for therapeutic decision making. Eur J Radiol. 2011;77(1):149–55.

    Article  PubMed  Google Scholar 

  95. Guimarães MD, Noschang J, Teixeira SR, et al. Whole-body MRI in pediatric patients with cancer. Cancer Imaging. 2017;17:6. https://doi.org/10.1186/s40644-017-0107-7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fritz J, Tzaribatchev N, Claussen CD, Carrino JA, Horger MS. Chronic recurrent multifocal osteomyelitis: comparison of whole-body MR imaging with radiography and correlation with clinical and laboratory data. Radiology. 2009;252(3):842–51.

    Article  PubMed  Google Scholar 

  97. Llopis E, Cerezal L, Kassarjian A, Higueras V, Fernandez E. Direct MR arthrography of the hip with leg traction: feasibility for assessing articular cartilage. AJR Am J Roentgenol. 2008;190(4):1124–8.

    Article  PubMed  Google Scholar 

  98. Dallaudière B, Meyer P, Larbi A, et al. Magnetic resonance arthrography of the wrist with axial traction: an iconographic review. Diagn Interv Imaging. 2015;96:1307–12.

    Article  PubMed  Google Scholar 

  99. Lee RK, Griffith JF, Yuen BT, Ng AW, Yeung DK. Elbow MR arthrography with traction. Br J Radiol. 2016;89:20160378.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Mahaletchumy T, AbAzis A. Incremental value of single-photon emission computed tomography-computed tomography for characterization of skeletal lesions in breast cancer patients. World J Nucl Med. 2017;16:303–10.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ioannidis JP, Lau J. 18F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. J Nucl Med. 2003;44:717–24.

    PubMed  Google Scholar 

  102. Macpherson RE, Pratap S, Tyrrell H, Khonsari M, Wilson S, Gibbons M, Hassan AB. Retrospective audit of 957 consecutive 18F-FDG PET–CT scans compared to CT and MRI in 493 patients with different histological subtypes of bone and soft tissue sarcoma. Clin Sarcoma Res. 2018;8(1):9. https://doi.org/10.1186/s13569-018-0095-9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gholamrezanezhad A, Basques K, Batouli A, Matcuk G, Alavi A, Javdar H. Clinical nononcologic applications of PET/CT and PET/MRI in musculoskeletal, orthopedic, and rheumatologic imaging. Am J Roentgenol. 2018;210(6):W245–63.

    Article  Google Scholar 

  104. Andersen KF, et al. PET/MR imaging in musculoskeletal disorders. PET Clin. 2016;11(4):453–63.

    Article  PubMed  Google Scholar 

  105. Behzadi AH, Si R, Carrino JA, Christos K, et al. Applications of PET/CT and PET/MR imaging in primary bone malignancies. PET Clin. 2018;13(4):623–34. https://doi.org/10.1016/j.cpet.2018.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rauscher I, Eiber M, Fürst S, Souvatzoglou M, Nekolla SG, Ziegler SI, Rummeny EJ, Schwaiger M, Beer AJ. PET/MR imaging in the detection and characterization of pulmonary lesions: technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med. 2014;55(5):724–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. McLoughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McLoughlin, E., Parvin, E.M., James, S.L., Botchu, R. (2019). Recent Advances in Imaging and Radiology in Orthopedics. In: Iyer, K., Khan, W. (eds) General Principles of Orthopedics and Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-15089-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15089-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15088-4

  • Online ISBN: 978-3-030-15089-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics