Skip to main content

High-Voltage and Power Transistors

  • Chapter
  • First Online:
Silicon Analog Components
  • 1196 Accesses

Abstract

This chapter focuses mainly on the drain-extended MOS (DEMOS) transistor and on the lateral double-diffused MOS (LDMOS) transistor for high-voltage/high-power applications. In both cases, the drain is extended with a lightly doped region, referred to as the drift region, to sustain the high voltage. The chapter begins with an analysis of the drift region and its optimization, typically by reduced surface field (RESURF) techniques. The transistor switching performance is then analyzed, followed by a discussion of DEMOS and LDMOS design considerations and characteristics. High-voltage and high-current effects are then described, including quasi-saturation (QS), body current, on-state breakdown, and safe operating area (SOA). The chapter concludes with selected high-voltage device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Epitaxy is the process of growing a single-crystal film on a single-crystal substrate.

References

  1. D. Riccardi, A. Causio, I. Filippi, A. Paleari, L.V.A. Pregnolato, P. Galbiati, BCD8 from 7 V to 70 V: a new 0.18 μm technology platform to address the evolution of applications towards smart power ICs with high logic contents. IEEE Proc. ISPSD, (2007), pp. 73–76

    Google Scholar 

  2. S. Pendharkar, R. Pan, T. Tamura, B. Todd, T. Efland, 7 to 30 V state-of-art power device implementation in 0.25 μm LBC7 BiCMOS-DMOS process technology.. IEEE Proc. ISPSD, (2004), pp. 419–422

    Google Scholar 

  3. H. Yang, W.-G. Min, X. Lin, V. Newenhouse, J. Huber, H. Xu, Z. Zhang, B. Peterson, J.K. Zuo, Low-leakage SMARTMOS 10 W technology at 0.13 μm node with optimized analog, power, and logic devices for SOC design. VLSI-TSA, (2008), pp. 111–114

    Google Scholar 

  4. H.L. Chou, P.C. Su, J.C.W. Ng, P.L. Wang, H.T. Lu, C.J. Lee, W.J. Syue, S.Y. Yang, Y.C. Tseng, C.C. Cheng, C.W. Yao, R.S. Liou, Y.C. Jong, J.L. Tsai, J. Cai, H.C. Tuan, C.F. Huang, J. Gong, 0.18 μm BCD technology platform with best-in-class 6 V to 70 V power MOSFETs. IEEE Proc. ISPSD, (2012), pp. 401–404

    Google Scholar 

  5. I-Y. Park et al., BD180 – a new 0.18 μm BCD (Bipolar-CMOS-DMOS) technology from 7 V to 60 V. IEEE Proc. ISPSD, (2008), pp. 64–67

    Google Scholar 

  6. H.J. Sigg, G. Vendelin, T.P. Cauge, J. Kocsis, D-MOS transistor for microwave applications. IEEE Trans. Electron Dev. 19(1), 45–53 (1972)

    Article  Google Scholar 

  7. C. Anghel, N. Hefyene, A. M. Ionescu, M. Vermandel, B. Bakeroot, J. Doutreloigne, R. Gillon, S. Frere, C. Maier, Y. Mourier, Investigations and physical modelling of saturation effects in Lateral DMOS transistor architectures based on the concept of intrinsic drain voltage. ESSDERC, (2001), pp. 399–402

    Google Scholar 

  8. J.A. Appels, H.M.J. Vaes, High voltage thin layer devices (RESURF devices). IEEE IEDM Tech. Digest, (1979), pp. 238–241

    Google Scholar 

  9. C. Hu, Optimum doping profile for minimum ohmic resistance and high-breakdown voltage. IEEE Trans. Electron Dev. ED-26(3), 343–344 (1979)

    Google Scholar 

  10. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, New York, 2008)

    Book  Google Scholar 

  11. A. Ludikhuize, A review of RESURF technology. IEEE Proc. ISPSD, (2000), pp. 11–18

    Google Scholar 

  12. C.Y. Tsai, J. Arch, T. Efland, J. Erdeljac, L. Hutter, J. Mitros, J.Y. Yang, and H.T. Yuan, Optimized 25 V, 0.34 mΩcm2 very-thin-RESURF (VTR), drain-extended IGFETs in a compressed BiCMOS process. IEEE IEDM Tech. Digest, (1996), pp. 469–472

    Google Scholar 

  13. M. Imam, Z. Hossain, M. Quddus, J. Adams, C. Hoggatt, T. Ishiguro, R. Nair, Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process. IEEE Trans. Electron Dev. 50(7), 1697–1701 (2003)

    Article  Google Scholar 

  14. Z. Hossain, M. Imam, J. Fulton, M. Tanaka, Double-RESURF 700 V N-channel LDMOS with best-in-class on-resistance. IEEE Proc. ISPSD, (2002), pp. 137–140

    Google Scholar 

  15. D.R. Disney, A.K. Paul, M. Darwish, R. Basecki, V. Rumennik, A new 800 V lateral MOSFET with dual conduction paths. IEEE Proc. ISPSD, (2001), pp. 399–402

    Google Scholar 

  16. Y. Shan, Q. Ming, Y. Zhang, B. Zhang, Design of 700 V triple RESURF nLDMOS with low on-resistance. J. Semiconductors 32(11), 114002-1–114002-4 (2011)

    Google Scholar 

  17. Z. Hossain, Determination of manufacturing RESURF process window for a robust 700 V double resurf LDMOS transistor. IEEE Proc. ISPSD, (2008), 133–136

    Google Scholar 

  18. Z. Hossain, T. Ishigwo, L. Tu, H. Corleto, F. Kuramae, R. Nair, Field-plate effects on the breakdown voltage of an integrated high-voltage LDMOS transistor. IEEE Proc. ISPSD, (2004), pp. 237–240

    Google Scholar 

  19. E. Flack, W. Gerlach, J. Korec, Influence of interconnections onto the breakdown voltage of planar high-voltage p-n junction. IEEE Trans. Electron Dev. 40(2), 439–447 (1993)

    Article  Google Scholar 

  20. N.C. Moon, K.W. Kwon, C.J. Lee, K.S. Sung, B.S. Kim, K.D. Yoo, H.S. Park, Design and optimization of 700 V HVIC technology with multi-ring isolation structure. IEEE Proc. ISPSD, (2013), pp. 151–154

    Google Scholar 

  21. V.A.K. Temple, Junction termination extension (JTE), a new technique for increasing avalanche breakdown voltage and controlling surface electric fields in p-n junctions. IEEE IEDM Tech. Digest, (1977), pp. 423–426

    Google Scholar 

  22. V.A.K Temple and W. Tantraporn, “Junction termination for near-ideal breakdown voltage in p-n junctions,” IEEE Trans. Electron Dev., ED-33(10), 1601–1608, 1986

    Google Scholar 

  23. J.K. Oh, M.W. Ha, M.K. Han, Y.I. Choi, A new junction termination method employing shallow trench filled oxide. IEEE Electron Dev. Lett. 25(1), 16–18 (2004)

    Article  Google Scholar 

  24. L. Théolier, H. Mahfoz-Kotb, K. Isoird, F. Morancho, A new junction termination using a deep trench filled with BenzoCycloButene. IEEE Electron Dev. Lett. 30(6), 667–669 (2009)

    Article  Google Scholar 

  25. V. Krishnamurthy, A. Gyure, P. Francis, Simple gate charge (Qg) measurement technique for on-wafer statistical monitoring and modeling of power semiconductor devices. IEEE ICMTS, (2011), pp. 98–100

    Google Scholar 

  26. P. Chimento, G. Lazzaro, S. Musumeci, A. Raciti, Analysis and comparison of low-voltage MOSFET devices with planar and trench-gate layouts. Conf. Integrated Power Systems (CIPS), (2006), pp. 1–6

    Google Scholar 

  27. N. Yasuhara, K. Matsushita, K. Nakayama, B. Tanaka, S. Hodama, A. Nakagawa, K. Nakamura, Low gate charge 30 V N-channel LDMOS for DC-DC converters. IEEE Proc. ISPSD, (2003), pp. 186–189

    Google Scholar 

  28. S. Xu, J. Korec, D. Jauregui, C. Kocon, S. Molly, H. Lin, G. Daum, S. Perelli, K. Barry, C. Pearce, O. Lopez, J. Herbsommer, NexFET A new power device. IEEE IEDM, (2009), pp. 145–148

    Google Scholar 

  29. Y.K. Choi, I.Y. Park, H.C. Lim, M.Y. Kim, C.J. Yoon, N.J. Kim, K.D. Yoo, L.N. Hutter, A versatile 30 V analog CMOS process in a 0.18 μm technology for power management applications. IEEE Proc. ISPSD, (2011), pp. 219–222

    Google Scholar 

  30. A. Mai, H. Rucker, Drain-extended MOS transistors capable for operation at 10 V and at radio frequencies. ESSDERC, (2010), pp. 110–113

    Google Scholar 

  31. J. Sonsky, A. Heringa, Dielectric Resurf: Breakdown voltage control by STI layout in standard CMOS. IEEE IEDM Tech. Digest, (2005), pp. 385–388

    Google Scholar 

  32. A. Heringa, J. Sonsky, J.J. Perez-Gonzalez, R.Y. Su, P.Y. Chiang, Innovative lateral field plates by gate fingers on STI regions in deep submicron CMOS. IEEE Proc. ISPSD, (2008), pp. 271–274

    Google Scholar 

  33. K.Y. Ko, I.Y. Park, Y.K. Choi, C.J. Yoon, J.H. Moon; K.M. Park; H.C. Lim, S.Y. Park, N.J. Kim, K.D. Yoo, L.N. Hutter, BD180LV – 0.18 μm BCD technology with best-in-class LDMOS from 7 V to 30 V. IEEE Proc. ISPSD, (2010), pp. 71–74

    Google Scholar 

  34. R. Pan, B. Todd, P. Hao, R. Higgins, D. Robinson, V. Drobny, W. Tian, J.L. Wang, J. Mitros, M. Huber, S. Pillai, S. Pendharkar, High voltage (up to 20 V) devices implementation in 0.13 μm BiCMOS process technology for system-on-chip (SOC) design. IEEE Proc. ISPSD, (2006), pp. 1–4

    Google Scholar 

  35. J. Lutz et al., Power Semiconductor Devices (Springer, Berlin, Heidelberg, 2011)

    Book  Google Scholar 

  36. J. Smith, A. Tessmer, L. Springer, P. Madhani, J. Erdeljac, J. Mitros, T. Efland, C.Y. Tsai, S. Pendharkar, L. Hutter, A 0.7 μm linear BiCMOS/DMOS technology for mixed-signal/power applications. IEEE BCTM, (1997), pp. 155–157

    Google Scholar 

  37. H. Chang, J.J. Jang, M.H. Kim, E.K. Lee, D.E. Jang, J.S. Park, JH. Jung, C.J. Yoon, S.R. Bae, C.H. Park, Advanced 0.13 μm smart power technology from 7 V to 70 V. IEEE Proc. ISPSD, (2012), pp. 217–220

    Google Scholar 

  38. K. Shirai, K. Yonemura, K. Watanabe, K. Kimura, Ultra-low on-resistance LDMOS implementation in 0.13 μm CD and BiCD process technologies for analog power ICs. IEEE Proc. ISPSD, (2009), pp. 77–79

    Google Scholar 

  39. T. Efland, C.T. Tsai, S. Pendharkar, Lateral thinking about power devices (LDMOS),” IEEE IEDM Tech. Digest, (1998), pp. 679–682

    Google Scholar 

  40. M.L. Kniffin, R. Thoma, J. Victory, Physical compact modeling of layout dependent metal resistance in integrated LDMOS power devices. ISPSD, (2000), pp. 173–176

    Google Scholar 

  41. M. Darwish, J. Huang, M. Liu, M.S. Shekar, R. Williams, M. Cornel, Scaling issues in lateral power MOSFETs. ISPSD, (2001), pp. 329–332

    Google Scholar 

  42. T. Efland; D. Abbott; V. Arellano; M. Buschbom; W. Chang; C. Hoffart; L. Hutter; Q. Mai; I. Nishimura; S. Pendharkar; M. Pierce; C.C. Shen, C.M. Thee, H. Vanhorn, C. Williams, LeadFrameOnChip offers integrated power bus and bond over active circuit. ISPSD, (2001), pp. 65–68

    Google Scholar 

  43. C. Contiero, P. Galbiati, M. Palmieri, I. Vecchi, LDMOS implementation by large tilt implant in 0.6 μm BCD5 process, flash memory compatible. IEEE Proc. ISPSD, (1996), pp. 75–78

    Google Scholar 

  44. A. Moscatelli, A. Merlini, G. Croce, P. Galbiati, C. Contiero, LDMOS implementation in a 0.35 μm BCD technology (BCD6). IEEE Proc. ISPSD, (2000), pp. 323–326

    Google Scholar 

  45. T.N. Buti, S. Ogura, N. Rovedo, K. Tobimatsu, A new asymmetrical halo source GOLD drain, (HS-GOLD) deep sub-half-micrometer n-MOSFET design for reliability and performance. IEEE Trans. Electron Dev. 18(8), 1757–1764 (1991)

    Article  Google Scholar 

  46. A. Hiroki, S. Odanaka, A. Hori, A high performance 0.1 μm MOSFET with asymmetric channel profile. IEEE IEDM Tech. Digest, (1995), pp. 439–442

    Google Scholar 

  47. C. Bulucea, S.R. Bahl, W.D. French, J.J. Yang, P. Francis, T. Harjono, V.J. Krishnamurthy, J. Tao, C. Parker, Physics, technology, and modeling of complementary asymmetric MOSFETs. IEEE Trans. Electron Dev. 57(10), 2363–2380 (2010)

    Article  Google Scholar 

  48. J. Victory, J. Sanchez, T. Massa, B. Welfert, Application of the MOS charge-sheet model to nonuniform doping along the channel. Solid State Electron. 38(8), 1497–1503 (1995)

    Article  Google Scholar 

  49. J. Victory, Z. Yan, G. Gildenblat, C. McAndrew, J. Zheng, A physically-based compact model for LDMOS transistors, in Simulation of Semiconductor Processes and Devices 1998, ed. by K. De Meyer, S. Biesemans, (Springer, Vienna, 1998), pp. 271–274

    Chapter  Google Scholar 

  50. R. Zingg, On the specific on-resistance of high-voltage and power devices. IEEE Trans. Electron Dev. 51(3), 492–499 (2004)

    Article  Google Scholar 

  51. X.B. Chen, M.S. Towers, P. Mawby, K. Board, High-voltage sustaining structure with embedded oppositely doped regions. IEE Proc. Cir. Dev. Syst. 146(2), 90–94 (1999)

    Article  Google Scholar 

  52. D.J. Coe, High voltage semiconductor device. U.S. Patent No. 4754310 A, 28 June 1988

    Google Scholar 

  53. X. Chen, Semiconductor power devices with alternating type high-voltage breakdown regions. U.S. Patent No. 5216275 A, 1 June 1993

    Google Scholar 

  54. J. Tihanyi, Power MOSFET. U.S. Patent 5438215 A, 1 Aug 1995

    Google Scholar 

  55. P. Kondekar, H.-S. Oh, Analysis of the breakdown voltage, the on-resistance, and the charge imbalance of a superjunction power MOSFET. J. Korean Phys. Soc. 44(6), 1565–1570 (2004)

    Google Scholar 

  56. G. Deboy, M. März, J.P. Stengl, H. Strack, J. Tihanyi, W. Weber, A new generation of high voltage MOSFETs breaks the limit line of silicon. IEEE IEDM, (1998), pp. 683–685

    Google Scholar 

  57. T. Fujihira, Theory of superjunction devices. J. Appl. Phys. 36(10), 6254–6262 (1997)

    Article  Google Scholar 

  58. M.A. Amberetu, C.A.T. Salama, 150-V class superjunction power LDMOS transistor switch on SOI. IEEE Proc. ISPSD, (2002), pp. 101–104

    Google Scholar 

  59. M.H. Kim, J.J. Kim, Y.S. Choi, C.K. Jeon, S.L. Kim, H.S. Kang, C.S. Song, A low on-resistance 700 V charge balanced LDMOS with intersected well structure. ESSDERC, (2002), pp. 367–370

    Google Scholar 

  60. M. Rub, M. Bar, G. Deml, H. Kapels, M. Schmitt, S. Sedlmaier, C. Tolksdorf, A. Willmeroth, A 600 V 8.7 ohm-mm2 lateral superjunction transistor. IEEE Proc. ISPSD, (2006), pp. 1–4

    Google Scholar 

  61. I.Y. Park, C.A.T. Salama, Super junction LDMOS transistors. IEEE Circuits and Devices Magazine, Nov/Dec (2006), pp. 10–15

    Google Scholar 

  62. I.Y. Park, C.A.T. Salama, CMOS compatible super junction LDMOST with N-buffer layer. IEEE Proc. ISPSD, (2005), pp. 159–161

    Google Scholar 

  63. M. Kodama, E. Hayashi, Y. Nishibe, T. Uesugi, Temperature characteristics of a new 100 V rated power MOSFET VLMOS (vertical LOCOS MOS). IEEE Proc. ISPSD, (2004), pp. 463–466

    Google Scholar 

  64. S.G. Nassif-Khalil, C.A.T. Salama, Superjunction LDMOST on a silicon-on-sapphire substrate. IEEE Trans. Electron Dev. 50(5), 1385–1391 (2003)

    Article  Google Scholar 

  65. S.G. Nassif-Khalil, C.A.T. Salama, SJ/RESURF LDMOST. IEEE Trans. Electron Dev. 51(7), 1185–1191 (2004)

    Article  Google Scholar 

  66. P. Moens, F. Bauwens, J. Baele, K. Vershinin, E. De Backer, E.M.S. Narayanan, M. Tack, XtreMOS: the first integrated power transistor breaking the silicon limit. IEEE IEDM Tech. Digest, (2006), pp. 919–922

    Google Scholar 

  67. A. Hastings, The Art of Analog Layout., Prentice Hall (Upper Saddle River, 2001)

    Google Scholar 

  68. O. Kononchuk, B. Y. Nguyen (eds.), Silicon-on-Insulator (SOI) Technology, Manufacture and Applications (Woodhead Publishing of Electronic and Optical Materials, Amsterdam, 2014)

    Google Scholar 

  69. P. Wessels, Smart power technologies on SOI. International Symposium on VLSI Technology, Systems and Architecture, (2011), pp. 1–2

    Google Scholar 

  70. S. Merchant, E. Arnold, H. Baumgart, S. Mukherjee, H. Pein, R. Pinker, Realization of high breakdown voltage (> 700 V) in thin SOI devices. IEEE Proc. ISPSD, (1991), pp. 31–35

    Google Scholar 

  71. H.J. Schulze, R. Kunhnert, Realization of a high-voltage planar junction termination for power devices. Solid State Electron. 32, 175–176 (1989)

    Article  Google Scholar 

  72. T. Letavic, E. Arnold, M. Simpson, R. Aquino, H. Bhimnathwala, R. Egloff, A. Emmerik, S. Wong, S. Mukherjee, High performance 600 V smart power technology based on thin layer silicon-on-insulator. IEEE Proc. ISPSD, (1997), pp. 49–52

    Google Scholar 

  73. S. Merchant, T. Efland, S. Haynie, W. Headen, K. Kajiyama, S. Paiva, R. Shaw, I. Tachikake, T. Tani, C.Y. Tsai, Robust 80 V LDMOS and 100 V DECMOS in a streamlined SOI technology for analog power applications. IEEE Proc. ISPSD, (2002), pp. 185–188

    Google Scholar 

  74. R. Constapel, J. Korec, Forward blocking characteristics of SOI power devices at high temperature. IEEE Proc. ISPSD, (1994), pp. 117–121

    Google Scholar 

  75. H. Yang, J. Zuo, Z. Zhang, W. Min, X. Lin, X. Cheng, M. L. Ger, P. Hui, P. Rodriquez, Approach to the silicon limit: advanced NLDMOS in 0.13 μm SOI technology for automotive and industrial applications up to 110 V. IEEE Proc. ISPSD, (2013), pp. 357–360

    Google Scholar 

  76. M. Berkhout, An integrated 200-W class-D audio amplifier. IEEE JSSC 38(7), 1198–1206 (2003)

    Google Scholar 

  77. P.L. Hower, S. Pendharkar, T. Efland, Current status and future trends in silicon power devices. IEEE IEDM Tech. Digest, (2010), pp. 308–311

    Google Scholar 

  78. S.Y. Kim, J.J. Kim, H. Prosack, Novel lateral 700 V DMOS for integration: ultra-low 85 mΩ-cm2 on-resistance, 750 V LFCC. IEEE Proc. ISPSD, (2012), pp. 185–189

    Google Scholar 

  79. R.Y. Su, F. J. Yang, J.L. Tsay, C. C. Cheng, R. S. Liou, and H. C. Tuan, State-of-the-art device in high voltage power ICs with lowest on-state resistance. IEEE IEDM Tech Digest, (2010), pp. 492–495

    Google Scholar 

  80. R.P. Zingg, I. Weijland, H. van Zwol, P. Boos, T. Lavrijsen, T. Schoenmakers, 850 V DMOS-switch in silicon on-insulator with specific Ron of 13 Ω-mm2. IEEE SOI Conf., (2000), pp. 62–63

    Google Scholar 

  81. R.V.H. Booth, C.C. McAndrew, A 3-terminal model for diffused and ion-implanted resistors. IEEE Trans. Electron Dev. 44(5), 809–814 (1997)

    Article  Google Scholar 

  82. J. Jang, O. Tornblad, T. Arnborg, Q. Chen, K. Banerjee, Z. Yu, R.W. Dutton, RF LDMOS characterization and its compact modeling. IEEE MTT-S Int. Microw. Symp. Dig. 2, 967–970 (2001)

    Google Scholar 

  83. K. Ben Ali, C.R. Neve, A. Gharsallah, J.P. Raskin, RF performance of SOI CMOS technology on commercial 200-mm enhanced signal integrity high resistivity SOI substrate. IEEE Trans. Electron Dev. 61(3), 722–727 (2014)

    Article  Google Scholar 

  84. E. Arnold, T. Letavic, S. Merchant, H. Bhimnathwala, High-temperature performance of SOI and bulk-silicon RESURF LDMOS transistors. IEEE Proc. ISPSD, (1996), pp. 93–96

    Google Scholar 

  85. E. Arnold, H. Pein, S. Herko, Comparison of self-heating effects in bulk- silicon and SOI high-voltage devices. IEEE IEDM, (1994), pp. 813–816

    Google Scholar 

  86. J.A. Van der Pol, A.W. Ludikhuize, H.G.A. Huizing, B. van Velzen, R.J.E. Hueting, J.F. Mom, G. van Lijnschoten, G.J.J. Hessels, E.F. Hooghoudt, R. van Huizen, M.J. Swanenberg, J.H.H.A. Egbers, F. van den Elshout, J.J. Koning, H. Schligtenhorst, J. Soeteman, A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications. IEEE Proc. ISPSD, (2000), pp. 327–330

    Google Scholar 

  87. A.W. Ludikhuize, J.A. van der Pol, A. Heringa, A. Padiy, E.R. Ooms, P. van Kessel, G.J.J. Hessels, M.J. Schwanenberg, B. van Velzen, H. van der Vlist, J.H.H.A. Egbers, M. Stoutjesdijk, Extended (180 V) voltage in 0.6 μm thin-layer-SOI A-BCD3 technology on 1 μm BOX for display, automotive & consumer applications. IEEE ISPSD Proc, (2002), pp. 77–80

    Google Scholar 

  88. S. Shimamoto, Y. Yanagida, S. Shirakawa, K. Miyakoshi, T. Imai, T. Oshima, J. Sakano, S. Wada, High performance Pch-LDMOS transistors in wide range voltage from 35 V to 200 V SOI LDMOS platform technology. IEEE Proc. ISPSD, (2011), pp. 44–47

    Google Scholar 

  89. M. Qiao, X. Zhou, Y. He, H. Wen, Y. Zhao, B. Zhang, Z. Li, 300-V high-side thin-layer-SOI field pLDMOS with multiple field plates based on field implant technology. IEEE Electron Dev. Lett. 33(10), 1438–1440 (2012)

    Article  Google Scholar 

  90. D.H. Lu, T. Mizushima, H. Sumida, M. Saito, H. Nakazawa, High voltage SOI P-channel field MOSFET structures. IEEE Proc. ISPSD, (2009), pp. 17–20

    Google Scholar 

  91. K. Zhou, X. Luo, Q. Xu, Z. Li, B. Zhang, A RESURF-enhanced p-channel trench SOI LDMOS with ultralow specific on-resistance. IEEE Trans. Electron Dev. 61(7), 2466–2472 (2014)

    Article  Google Scholar 

  92. B.S. Kumar, M. Shrivastava, Part I: On the unification of physics of quasi-saturation in LDMOS devices. IEEE Trans Electron Dev. 65(1), 191–198 (2018)

    Article  Google Scholar 

  93. J.L. Sanchez, M. Gharbi, H. Tranduc, P. Rossel, Quasisaturation effect in high-voltage VDMOS transistors. IRE Proc. 112(pt. 1, 1), 42–46 (1985)

    Google Scholar 

  94. M.N. Darwish, Study of the quasi-saturation effect in VDMOS transistors. IEEE Trans. Electron Dev. ED-33(11), 1710–1716 (1986)

    Article  Google Scholar 

  95. Y.S. Chauhan, C. Anghel, F. Krummenacher, C. Maier, R. Gillon, B. Bakeroot, B. Desoete, S. Frere, A.B. Desormeaux, A. Sharma, M. Declercq, A.M. Ionescu, Scalable general high voltage MOSFET model including quasi- saturation and self-heating effects. Solid State Electron. 50(11), 1801–1813 (2006)

    Article  Google Scholar 

  96. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)

    Article  Google Scholar 

  97. C.T. Kirk, Jr., A theory of transistor cut-off frequency fall-off at high current densities. IEEE Trans. Electron Dev. ED-9(2), 164–174 (1962)

    Google Scholar 

  98. M. Knaipp, G. Röhrer, R. Minixhofer, E. Seebacher, Investigations on the high current behavior of lateral diffused high-voltage transistors. IEEE Trans. Electron Dev. 51(10), 1711–1720 (2004)

    Article  Google Scholar 

  99. A. Canepari, G. Bertrand, A. Giry, M. Minondo, F. Blanchet, H. Jaouen, B. Reynard, N. Jourdan, J.P. Chante, LDMOS modeling for analog and RF circuit design. IEEE Proc. ISPSD, (2005), pp. 469–472

    Google Scholar 

  100. S.F. Frère, P. Moens, B. Desoete, D. Wojciechowski, A.J. Walton, An improved transistor model that accurately predicts capacitance for all bias conditions. IEEE Proc. ICMTS 18, 75–79 (2005)

    Google Scholar 

  101. A.C.T. Aarts, W.J. Kloosterman, Compact modeling of high-voltage LDMOS devices including quasi-saturation. IEEE Trans. Electron Dev. 53(4), 897–902 (2006)

    Article  Google Scholar 

  102. L. Wang, J. Wang, C. Gao, J. Hu, P. Li, S.H.Y. Yang, Physical description of quasi-saturation and impact ionization effects in high-voltage drain extended MOSFETs. IEEE Trans. Electron Dev. 56(3), 492–498 (2009)

    Article  Google Scholar 

  103. Y. Shi, N. Feilchenfeld, R. Phelps, M. Levy, M. Knaipp, R. Minixhofer, Drift design impact on quasi-saturation & HCI for scalable N-LDMOS. IEEE Proc. ISPSD, (2011), pp. 215–218

    Google Scholar 

  104. W. Yao, G. Gildenblat, C.C. McAndrew, A. Cassagnes, SP-HV: A scalable surface-potential-based compact model for LDMOS transistors. IEEE Trans. Electron Dev. 59(3), 542–550 (2012)

    Article  Google Scholar 

  105. W. Wang, B. Tudor, X. Xi, W. Liu, F.J. Lee, An accurate and robust compact model for high-voltage MOS IC simulation. IEEE Trans. Electron Dev. 60(2), 662–669 (2013)

    Article  Google Scholar 

  106. C.C. McAndrew, A. Lorenzo-Cassgnes, P. Goyhenetche, J. Pigott, W. Yao, G. Gildenblat, J. Victory, Advances in LDMOS compact modeling for IC design. IEEE Solid-State Circuits Magazine, (June 2014), pp. 35–46

    Article  Google Scholar 

  107. P.L. Hower, J. Lin, S. Merchant, Snapback and safe operation area of LDMOS transistors. In IEEE IEDM Tech. Digest, (1999), pp. 193–196

    Google Scholar 

  108. S.K. Lee, C.J. Kim, J.H. Kim, Y.C. Choi, H.S. Kang, C.S. Song, Optimization of safe-operating-area using two peaks of body-current in submicron LDMOS transistors. IEEE Proc. ISPSD, (2001), pp. 287–290

    Google Scholar 

  109. P.L. Hower, J. Lin, S. Pendharkar, B. Hu, J. Arch, J. Smith, T. Efland, A rugged LDMOS for LBC5 technology. IEEE Proc. ISPSD, (2005), pp. 159–162

    Google Scholar 

  110. S. Reggiani, E. Gnani, A. Gnudi, G. Baccarani, M. Denison, S. Pendharkar, R. Wise, S. Seetharaman, Investigation on saturation effects in the rugged LDMOS transistor. IEEE Proc. ISPSD, (2009), pp. 208–211

    Google Scholar 

  111. K. Kinoshita, Y. Kawaguchi, A. Nakagawa, A new adaptive RESURF concept for 20 V LDMOS without breakdown voltage degradation at high current. IEEE Proc. ISPSD, (1998), pp. 65–68

    Google Scholar 

  112. S. Pendharkar, T. Efland, C. Tsai, Analysis of high current breakdown and UIS behavior of RESURF LDMOS (RLDMOS) devices. IEEE Proc. ISPSD, (1998), pp. 419–422

    Google Scholar 

  113. Y.S. Chung, B. Baird, Electrical-thermal coupling mechanism on operating limit of LDMOS transistor. IEEE IEDM Tech. Digest, (2000), pp. 83–86

    Google Scholar 

  114. W.R. Curtice, J.A. Pla, D. Bridges, T. Liang, E.E. Shumate, A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FETs. IEEE MTT-S Digest, (1999), pp. 419–422

    Google Scholar 

  115. J. McPherson, Reliability Physics and Engineering (Springer, Heidelberg, 2013)

    Book  Google Scholar 

  116. C. Anghel, R. Gillon, A.M. Ionescu, Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs. IEEE Elec. Dev. Letters 25(3), 141–143 (2004)

    Article  Google Scholar 

  117. B.M. Tenbroek, S.L. Lee, W. Redman-White, R.J.T. Bunyan, M.J. Uren, Impact of self-heating and thermal coupling on analog circuits in SOI CMOS. IEEE J. Solid-State Circuits 33(7), 1037–1046 (1988)

    Article  Google Scholar 

  118. Y.K. Leung, A.K. Paul, K.E. Goodson, J.D. Plummer, S.S. Wong, Heating mechanisms of LDMOS and LIGBT in ultrathin SOI. IEEE Electron Dev. Lett. 18(7), 414–416 (1997)

    Article  Google Scholar 

  119. W. Jin, W. Liu, S.K.H. Fung, P.C.H. Chan, C. Hu, SOI thermal impedance extraction methodology and its significance for circuit simulation. IEEE Trans. Electron. Dev. 48(4), 730–736 (2001)

    Article  Google Scholar 

  120. J. Roig, J. Urresti, I. Cortés, D. Flores, S. Hidalgo, J. Millán, Efficiency of SOI-like structures for reducing the thermal resistance in thin-film SOI power LDMOSFETs. IEEE Electron Dev. Lett. 25(11), 743–745 (2004)

    Article  Google Scholar 

  121. P. Baine, J.H. Montgomery, B.M. Armstrong, H.S. Gamble, S.J. Harrington, S. Nigrin, R. Wilson, K.B. Oo, A.G. Armstrong, S. Suder, Improved thermal performance of SOI using a compound buried layer. IEEE Trans. Electron Dev. 61(6), 1999–2006 (2014)

    Article  Google Scholar 

  122. W. Yao, G. Gildenblat, C.C. McAndrew, A. Cassagnes, Compact model of impact ionization in LDMOS transistors. IEEE Trans. Electron Dev. 50(7), 1863–1869 (2012)

    Article  Google Scholar 

  123. S. Poli, S. Reggiani, M. Denison, E. Gnani, A. Gnudi, G. Baccarani, S. Pendharkar, R. Wise, Temperature dependence of the threshold voltage shift induced by carrier injection in integrated STI-based LDMOS transistors. IEEE Electron Dev. Lett. 32(6), 791–793 (2011)

    Article  Google Scholar 

  124. P.L. Hower, C.Y. Tsai, S. Merchant, T. Efland, S. Pendharkar, R. Steinhoff, J. Brodsky, Avalanche-induced thermal instability in LDMOS transistors. IEEE Proc. ISPSD, (2001), pp. 153–156

    Google Scholar 

  125. G. Dolny, G. Nostrand, K. Hill, The effect of temperature on lateral DMOS transistors in a power IC technology. IEEE Trans. Electron Dev. 30(4), 990–995 (1992)

    Article  Google Scholar 

  126. N.D. Arora, G.S. Gildenblat, A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation. IEEE Trans. Electron Dev. ED-34(1), 89–93 (1987)

    Article  Google Scholar 

  127. R. Zuleeg, K. Lehovec, Temperature dependence of the saturation current of MOSTs. IEEE Trans. Electron Dev., ED-15(12), 987–989 (1968)

    Article  Google Scholar 

  128. R.S.C. Cobbold, Temperature effects in M.O.S. transistors. Electronics Lett. 2(6), 190–191 (1966)

    Article  Google Scholar 

  129. D. Yang, L. Zhang, Y. Wang, Z. Yu, An Efficient Compact Model for LDMOS with Self-Heating Effects. Intnl. Conf. Solid-State and Integrated-Circuit Tech., (2008), pp. 313–316

    Google Scholar 

  130. J. Zhang, A Physics-based LDMOS model and a simple characterization method for self-heating effect on power device. IEEE Electron Devices and Solid-State Circuits, (2007), pp. 781–783

    Google Scholar 

  131. S.A. Schwarz, S.E. Russek, Semi-empirical equations for electron velocity in silicon: Part I - Bulk. IEEE Trans. Electron Dev. 30(12), 1629–1633 (1983)

    Article  Google Scholar 

  132. C. Jacobini, C. Canali, G. Ottaviani, A. Alberigi-Quaranta, A review of some charge transport properties of silicon. Solid State Electron. 20(2), 77–89 (1977)

    Article  Google Scholar 

  133. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien/New York, 1984)

    Book  Google Scholar 

  134. T.Y. Chan, S.W. Lee, H. Gaw, Experimental characterization and modeling of electron saturation velocity in MOSFET’s inversion layer from 90 to 350 K. IEEE Electron Dev. Lett. 11(10), 466–468 (1990)

    Article  Google Scholar 

  135. S.S. Rofail, M.A. Chaudhry, The temperature dependence of breakdown voltage and on-resistance of LDMOS’s. IEEE Trans. Electron Dev. 34(4), 933–935 (1987)

    Article  Google Scholar 

  136. M.J. Declercq, J.D. Plummer, Avalanche breakdown in high-voltage D-MOS devices. IEEE Trans Electron Dev. ED-32(1), 1–4 (1976)

    Article  Google Scholar 

  137. P.L. Hower, S. Pendharkar, Short and long-term safe operating area considerations in LDMOS transistors. IEEE IRPS, (2005), pp. 545–550

    Google Scholar 

  138. M. Denison, M. Pfost, K.W. Pieper, S. Markl, D. Metzner, M. Stecher, Influence of inhomogeneous current distribution on the thermal SOA of integrated DMOS transistors. IEEE Proc. ISPSD, (2004), pp. 409–412

    Google Scholar 

  139. P.L. Hower, P.K. Govil, Comparison of one- and two-dimensional models of transistor thermal instability. IEEE Trans. Electron Dev. 21(10), 617–623 (1974)

    Article  Google Scholar 

  140. P. Moens, G. Van den Bosch, Characterization of total safe operating area of lateral DMOS transistors. IEEE Trans. on Elec. Mat. Rel. 6(3), 349–357 (2006)

    Article  Google Scholar 

  141. V. Benda, J. Gowar, D.A. Grant, Power Semiconductor Devices – Theory and Applications (Wiley, Chichester, 1999)

    Google Scholar 

  142. M. Denison, M. Pfost, M. Stecher, D. Silber, Analysis and modeling of DMOS FBSOA limited by n-p-n leakage diffusion current. IEEE Proc. ISPSD, (2005), pp. 159–162

    Google Scholar 

  143. V. Dwyer, A.J. Franklin, D.S. Campbell, Electrostatic discharge thermal failure in semiconductor devices. IEEE Trans. Electron Dev. 37(11), 2381–2387 (1990)

    Article  Google Scholar 

  144. P. Spirito, B. Breglio, V. d’Alessandro, N. Rinaldi, Thermal instabilities in high current power MS devices: Experimental evidence, electro-thermal simulations and analytical modeling. MIEL 1, 23–30 (2002)

    Google Scholar 

  145. C. Ma, P. Lauritzen, A simple power diode model with forward and reverse recovery. IEEE Trans. Power Electronics 8(4), 342–346

    Article  Google Scholar 

  146. M. Rahimo, N. Shammas, Freewheeling diode reverse recovery failure modes in IGBT applications. IEEE Trans. Industr. Appl. 37(2), 661–670 (2001)

    Article  Google Scholar 

  147. J.A.R. Latorre, M.A. Jimenez, R. Palomera, Automated wafer-level measurement of LDMOS reverse recovery parameters. IEEE MWSCAS, (2012), pp. 1072–1075

    Google Scholar 

  148. AN2385 application note, “Power dissipation and its linear derating factor, silicon limited drain current and pulsed drain current in MOSFETs,” STMicroelectronics, revision 1, June 2006

    Google Scholar 

  149. A. Tsui, H. Yilmaz, I. Hshieh, M. Chang, T. Fortier, Commutating SOA capability of power DMOS FETs. IEEE APEC Proceedings, (1990), pp. 481–485

    Google Scholar 

  150. T. Matsudai, K. Sato, N. Yasuhara, H. Saito, K. Endo, F. Takeuchi, M. Yamamoto, 0.13 μm CMOS/DMOS platform technology with novel 8 V/9 V LDMOS for low voltage high-frequency DC-DC converters. IEEE Proc. ISPSD, (2010), pp. 315–318

    Google Scholar 

  151. Y.K. Choi, I.Y. Park, H.S. Oh, W. Lee, N.J. Kim,K.D. Yoo, Implementation of low Vgs (1.8 V) 12 V RF-LDMOS for high-frequency DC-DC converter applications. IEEE Proc. ISPSD, (2012), pp. 125–128

    Google Scholar 

  152. A. Sagneri, Design of a very high frequency dc-dc boost converter, MS thesis, MIT, 2007

    Google Scholar 

  153. J.M. Burkhart, R. Korsunsky, D.J. Perreault, Design methodology for a very high frequency resonant boost converter. IEEE IPEC, (2010), pp. 1902–1909

    Google Scholar 

  154. U.S. Department of Energy website., http://energy.gov/energysaver/articles/led-lighting

  155. K. Billings, T. Morey, Switchmode Power Supply Handbook, 3rd edn. (McGraw-Hill Publishing, New York, 2011)

    Google Scholar 

  156. S. Ang, A. Oliva, Power-Switching Converters, 2nd edn. (CRC Press, Boca Raton, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Problems

Problems

  1. 1.

    The channel length of the intrinsic MOSFET in a DENMOS is 1 μm and the drift length 4 μm. Assume velocity saturation in both the MOSFET and drift region, and find the time of flight for an electron to travel from source to drain.

  2. 2.

    The channel width of a DENMOS is 1 cm, and the off-current at 25 °C is measured as 1 pA/μm. Assume an ideality factor of 1.4 and a decrease in VT of 1 mV/°C as the temperature increases from 25 to 125 °C, and calculate the off-current at 125 °C. Neglect the thermally generated current.

  3. 3.

    For a DENMOS having a device pitch of 4.45 μm and an RSP = 20 mΩ-mm2, find the device width needed to achieve RDS(on) = 1 Ω.

  4. 4.

    In a planar LDMOS, the gate overlap of the N-drift region is 0.5 μm, the gate oxide thickness is 15 nm, the threshold voltage is 0.7 V, the device width is 1 cm, and the fringe capacitance between gate and N-drift region is 0.25 fF/μm. The gate is charged with a constant current of 1 mA. Estimate the time-span of the Miller plateau.

  5. 5.

    The following LDMOS information is given: intrinsic MOSFET tox = 12.5 nm, Leff = 1 μm, VT = 0.7 V, device width = 20 μm, tdrift = 1.5 μm, Ldrift = 2 μm, and ND = 2 × 1016 cm−3. Approximate the gate voltage at the onset of the Kirk effect in the drift region. Assume that at that point, the MOSFET operates in saturation, μeff = 300 cm2/Vs, and the temperature is 25 °C.

  6. 6.

    At what drain voltage will avalanche breakdown occur in the structure below? Assume a critical field of 3 × 105 V/cm and 25 °C.

    figure 62
  7. 7.

    The structure in the figure below was subjected to hot-electron stress during which electrons were trapped in the STI at the interface with the N-drift region. Assume that the trapped electrons are uniformly distributed at a concentration of 5 × 1011 cm−2. For 25 °C, estimate

    1. (a)

      The N-drift sheet resistance in the portion under the sheet of trapped electrons and under the portion covered by the poly gate

    2. (b)

      The drift resistance under the STI for a device width of 1 cm

      figure 63
  8. 8.

    Calculate the room temperature depletion width and the peak field in silicon in the N-drift region beneath the polysilicon plate, under the STI and at the N-drift-to-P-substrate junction shown in the figure below.

    figure 64
  9. 9.

    For the planar NLDMOS in the figure below, assume Ldrift = 2 μm, Lacc = 0.5 μm, tdrift = 1.3 μm, Leff = 1.0 μm, Weff = 20 μm, tox = 15 nm, and no gate oxide charge. (a) Estimate the room temperature drift resistance for VG at flatband. (b) Estimate RDS(on) for VG = +5 V at 25 and 140 °C. Hint: for surface mobility, use the universal mobility plots in Chap. 6.

    figure 65
  10. 10.

    Consider a 24-V NLDMOS power switch that should carry 10 A and must operate from −40 to +125 °C. The voltage drop across the structure may not exceed 0.5 V. The breakdown voltage, BVDSS, follows a normal distribution with σ = 0.5 V and has a temperature coefficient of 1500 ppm/°C. Assume 10% variation in the power supply voltage, 15% tolerant to RDS(on), and a device pitch of 3.25 μm. For a Six Sigma design, estimate the minimum width of the NLDMOS that should be designed to satisfy the above conditions.

  11. 11.

    For an LDMOS of the type shown in Fig. 7.7, assume ND-drift = 5 × 1016 cm−3, tdrift = 1.5 μm, NA-body = 5 × 1016 cm−3, NA-SUB = 1015 cm−3, and no interaction with the MOS region. Determine

    1. (a)

      If this structure can achieve optimum RESURF (region II in Fig. 7.12)

    2. (b)

      The lateral (P-body/N-drift) breakdown voltage

  12. 12.

    For the structure of the type in Fig. 7.7, determine the required P-substrate doping, Nsub, to achieve optimum RESURF assuming ND = 7 × 1016 cm−3 in the drift region and tdrift = 2 μm.

  13. 13.

    The intrinsic MOSFET in an LDMOS is designed with tox = 12.5 nm, Leff = 0.6 μm, Weff = 10 μm, uniform body concentration NA = 2 × 1017 cm−3, and N+-poly gate. For VG = 5 V, at what temperature T will dID/dT ≈ 0?

  14. 14.

    Explain why a MOSFET with a laterally graded channel as in NLDMOS exhibits a sharper peak in transconductance than a conventional NMOS having a laterally uniform channel.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Kareh, B., Hutter, L.N. (2020). High-Voltage and Power Transistors. In: Silicon Analog Components. Springer, Cham. https://doi.org/10.1007/978-3-030-15085-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-15085-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-15084-6

  • Online ISBN: 978-3-030-15085-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics