Skip to main content

Model, Scale, and Measurement

  • Chapter
  • First Online:
Book cover Diffusion in Random Fields

Part of the book series: Geosystems Mathematics ((GSMA))

  • 537 Accesses

Abstract

In this chapter, relations between model, scale, and measurement will be discussed. A particular attention will be paid to the perspective of using spatio-temporal upscaling to bring model output closer to the measured observable of the physical system, with emphasis on hydrological observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andričević, R.: Effects of local dispersion and sampling volume on the evolution of concentration fluctuations in aquifers. Water Resour. Res. 34(5), 1115–1129 (1998)

    Article  Google Scholar 

  2. Battiato, I.: Multiscale dynamics of reactive fronts in heterogeneous media with fluctuating forcings. In: SIAM Conference on Mathematical and Computational Issues in the Geosciences September 11–14, 2017, Erlangen. http://www.siam-gs17.de/program/invited-talks-prize-presentations

  3. Bayer-Raich, M., Jarsjö, J., Liedl, R., Ptak, T., Teutsch, G.: Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: analytical framework. Water Resour. Res. 40(8), W08303 (2004)

    Article  Google Scholar 

  4. Caroni, E., Fiorotto, V.: Analysis of concentration as sampled in. Transp. Porous Media 59(1), 19–45 (2005)

    Article  Google Scholar 

  5. Crăciun, M., Vamoş, C., Suciu, N.: Analysis and generation of groundwater concentration time series. Adv. Water Resour. 111, 20–30 (2018)

    Article  Google Scholar 

  6. Cushman, J.H.: Multiphase transport equations: I-general equation for macroscopic statistical, local space-time homogeneity. Transp. Theory Stat. Phys. 12(1), 35–71 (1983)

    Article  MathSciNet  Google Scholar 

  7. de Barros, F.P.J., Fiori, A.: First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50(5), 4018–4037 (2014)

    Article  Google Scholar 

  8. Destouni, G., Graham, W.: The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33(4), 663–676 (1997)

    Article  Google Scholar 

  9. Gray, W.G., Miller, C.T.: A generalization of averaging theorems for porous medium analysis. Adv. Water Res. 62, 227–327 (2013)

    Article  Google Scholar 

  10. Gray, W.G., Dye, A.L., McClure, J.E., Pyrak-Nolte, L.J., Miller, C.T.: On the dynamics and kinematics of two-fluid-phase flow in porous media. Water Resour. Res. 51(7), 5365–5381 (2015)

    Article  Google Scholar 

  11. He, Y., Sykes, J.F.: On the spatial-temporal averaging method for modeling transport in porous media. Transp. Porous Media 22(1), 1–51 (1996)

    Article  Google Scholar 

  12. Mailloux, B.J., Fuller, M.E., Rose, G.F., Onstott, T.C., DeFlaun, M.F., Alvarez, E., Hemingway, C., Hallet, R.B., Phelps, T.J., Griffin, T.: A modular injection system, multilevel sampler, and manifold for tracer tests. Ground Water 41(6), 816–827 (2003)

    Article  Google Scholar 

  13. McClure, J.E., Dye, A.L., Miller, C.T., Gray, W.G.: On the consistency of scale among experiments, theory, and simulation. Hydrol. Earth Syst. Sci. 21(2), 1063 (2017)

    Article  Google Scholar 

  14. Nolen, J., Papanicolaou, G., Pironneau, O.: A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7, 171–196 (2008)

    Article  MathSciNet  Google Scholar 

  15. Nordbotten, J.M., Celia, M.A., Dahle, H.K., Hassanizadeh, S.M.: Interpretation of macroscale variables in Darcy’s law. Water Resour. Res. 43(8), W08430 (2007)

    Article  Google Scholar 

  16. Ptak, T., Schwarz, R., Holder, T., Teutsch, G.: Ein neues Verfahren zur Quantifizierung der Grundwasserimmission: I. Theoretische Grundlagen. Grundwasser 4(5), 176–183 (2000)

    Article  Google Scholar 

  17. Schüler, L., Suciu, N., Knabner, P., Attinger, S.: A time dependent mixing model to close PDF equations for transport in heterogeneous aquifers. Adv. Water Resour. 96, 55–67 (2016)

    Article  Google Scholar 

  18. Schwede, R.L., Cirpka, O.A., Nowak, W., Neuweiler, I.: Impact of sampling volume on the probability density function of steady state concentration. Water Resour. Res. 44(12), W12433 (2008)

    Article  Google Scholar 

  19. Skøien, J.O., Blöschl, G., Western, A.W.: Characteristic space scales and timescales in hydrology. Water Resour. Res. 39(10), 1304 (2003)

    Article  Google Scholar 

  20. Srzic, V., Cvetkovic, V., Andricevic, R., Gotovac, H.: Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty. Water Resour. Res. 49(6), 3712–3728

    Article  Google Scholar 

  21. Suciu, N.: Mathematical background for diffusion processes in natural porous media. Forschungszentrum Jülich/ICG-4, Internal Report No. 501800 (2000)

    Google Scholar 

  22. Suciu, N.: On the connection between the microscopic and macroscopic modeling of the thermodynamic processes (in Romanian). Ed. Univ. Piteşti, Piteşti (2001)

    Google Scholar 

  23. Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water. Resour. 69, 114–133 (2014)

    Article  Google Scholar 

  24. Suciu, N., Vamoş, C., Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409 (2006)

    MATH  Google Scholar 

  25. Suciu, N., Radu, F.A., Attinger, S., Schüler, L., Knabner, P.: A Fokker–Planck approach for probability distributions of species concentrations transported in heterogeneous media. J. Comput. Appl. Math. 289, 241–252 (2015)

    Article  MathSciNet  Google Scholar 

  26. Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016)

    Article  Google Scholar 

  27. Teutsch, G., Ptak, T., Schwarz, R., Holder, T.: Ein neues Verfahren zur Quantifizierung der Grundwasserimmission: I. Theoretische Grundlagen. Grundwasser 4(5), 170–175 (2000)

    Article  Google Scholar 

  28. Tonina, D., Bellin, A.: Effects of pore-scale dispersion, degree of heterogeneity, sampling size, and source volume on the concentration moments of conservative solutes in heterogeneous formations. Adv. Water Resour. 31(2), 339–354 (2008)

    Article  Google Scholar 

  29. Vamoş, C.: Continuous fields associated to corpuscular systems (in Romanian). Risoprint, Cluj-Napoca (2007). English version http://ictp.acad.ro/vamos/cv-thesis/

  30. Vamoş, C., Georgescu, A., Suciu, N., Turcu, I.: Balance equations for physical systems with corpuscular structure. Phys. A: Stat. Mech. Appl. 227(1), 81–92 (1996)

    Article  Google Scholar 

  31. Vamoş, C., Suciu, N., Peculea, M.: Numerical modelling of the one-dimensional diffusion by random walkers. Rev. Anal. Numér. Théor. Approx. 26(1), 237–247 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Vamoş, C., Suciu, N., Georgescu, A.: Hydrodynamic equations for one-dimensional systems of inelastic particles. Phys. Rev. E 55(5), 6277–6280 (1997)

    Article  MathSciNet  Google Scholar 

  33. Vamoş, C., Suciu, N., Blaj, W.: Derivation of one-dimensional hydrodynamic model for stock price evolution. Phys. A: Stat. Mech. Appl. 287(3), 461–467 (2000)

    Article  MathSciNet  Google Scholar 

  34. Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–244 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suciu, N. (2019). Model, Scale, and Measurement. In: Diffusion in Random Fields . Geosystems Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15081-5_7

Download citation

Publish with us

Policies and ethics