Skip to main content

Brain Storm Optimization Algorithms for Solving Equations Systems

  • Chapter
  • First Online:
Brain Storm Optimization Algorithms

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 23))

Abstract

This chapter refers to the use of Brain Storm Optimization (BSO) algorithms in solving equations systems (ES). BSO algorithm is a swarm intelligence algorithm, which simulates the human brainstorming process, a form of human collective creativity. Mainly, in this chapter, two algorithms are proposed: the first for ES preconditioning and second for solving ES. First, is proposed a BSO method aiming the bandwidth reduction of sparse matrices, a process that can improve a lot of computing processes, such as solving large systems of linear equations. The other one proposes a method for solving equations systems that uses BSO. For the second problem, a new crossover strategy as well as a hybridization of BSO with graph theory elements are proposed. Serial and parallel variants of both algorithms are presented. Experimental results obtained illustrate the fact that the proposed algorithms lead to good results, with respect to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jablonski, A.: A Monte Carlo algorithm for solving systems of non-linear equations. J. Comput. Appl. Math. 6(3), 171–175 (1980). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Shakarchy, N.D.K., Abd, E.H.: Application of neural network for solving linear algebraic equations. J. Kerbala Univ. 10(4) (2012). Scientific

    Google Scholar 

  3. Ren, H., Wu. L., Bi, W., Ioannis, Argyros, K.: Solving nonlinear equations system via an efficient genetic algorithm with symmetric and harmonious individuals. Appl. Math. Comput. 219(23), 10967–10973 (2013). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhou, Y., Huang, H., Zhang, J.: Hybrid artificial fish swarm algorithm for solving ill-conditioned linear systems of equations. In: Chen, R. (ed.) Intelligent Computing and Information Science. Communications in Computer and Information Science, vol. 134. Springer (2011)

    Google Scholar 

  5. Xia, Y.H., Li, Y.G.: An improved quantum ant colony algorithm of solving nonlinear equation groups. Adv. Mater. Res. 1049–1050, 1363–1366 (2014)

    Article  Google Scholar 

  6. Mafteiu-Scai, L.O., Mafteiu-Scai, E.J.: Solving liniar systems of equations using a memetic algorithm. IJCA (0975–8887) 58(13) (2012). ISBN 973-93-80870-43-5

    Google Scholar 

  7. Abdollahi, M., Bouyer, A., Abdollahi, D.: Improved cuckoo optimization algorithm for solving systems of nonlinear equations. J. Supercomput. 72, 1246–1269 (2016). https://doi.org/10.1007/s11227-016-1660-8

    Article  Google Scholar 

  8. Hirsch, M.J., Pardalos, P.M., Resende, Mauricio, G.C.: Solving systems of nonlinear equations with continuous GRASP. Nonlinear Anal.: Real World Appl. 10(4), 2000–2006 (2009). Elsevier

    Google Scholar 

  9. Pourrajabian, A., Ebrahimi, R., Mirzaei, M., Shams, M.: Applying genetic algorithms for solving nonlinear algebraic equations. Appl. Math. Comput. 219(24), 11483–11494 (2013). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  10. Abdel-Baset, M., Hezam, I.M.: A hybrid flower pollination algorithm for solving ill-conditioned set of equations. Int. J. Bio-Inspired Comput. 8(4) (2016)

    Article  Google Scholar 

  11. Arbenz, P., Cleary, A., Dongarra, J., Hegland, M.: Parallel Numerical Linear Algebra, Chapter A Comparison of Parallel Solvers for Diagonally Dominant and General Narrow Banded Linear Systems, pp. 35–56. Nova Science Publishers Inc, Commack, NY, USA (2001)

    Google Scholar 

  12. Mafteiu-Scai, L.O.: Average bandwidth relevance in parallel solving systems of linear equations. IJERA 3(1), 1898–1907 (2013). ISSN 2248-9622

    Google Scholar 

  13. Maruster, S., Negru, V., Mafteiu-Scai, L.O.: Experimental Study on Parallel Methods for Solving Systems of Equations. IEEE (2013). https://doi.org/10.1109/synasc.2012.7. ISBN 978-1-4673-5026-6

  14. Chan, G.K., Head-Gordon, M.: Highly correlated calculations with a polynomial cost algorithm: a study of the density matrix renormalization group. J. Chem. Phys. 116(11) (2002). https://doi.org/10.1063/1.1449459

    Article  Google Scholar 

  15. Huang, H., Dennis, J.M., Wang, L., Chen, P.: A scalable parallel LSQR algorithm for solving large-scale linear system for tomographic problems: a case study in seismic tomography, ICCS 2013, Proc. Comput. Sci. 18, 581–590 (2013)

    Article  Google Scholar 

  16. Ababei, C., Feng, Y., Goplen, B., Mogal, H., Zhang, T., Bazargan, K., Sapatnekar, S.: Placement and Routing in 3D Integrated Circuits, Design and Test of Computers, pp. 520–531. IEEE (2005). ISSN 0740-7475

    Article  Google Scholar 

  17. Bhatt, S.N., Leighton, F.T.: A Framework for Solving VLSI Graph Layout Problems, Computer and System Sciences, vol. 28. Elsevier (1984)

    Google Scholar 

  18. Caproni, A., Cervelli, F., Mongiardo, M., Tarricone, L., Malucelli, F.: Bandwidth reduced full-wave simulation of lossless and thin planar microstrip circuits. ACES J. 13(2), 197–204 (1998)

    Google Scholar 

  19. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville, MD (1983)

    MATH  Google Scholar 

  20. Behrisch, M., Bach, B., Riche, N.H., Schreck, T., Fekete, J.D.: Matrix reordering methods for table and network visualization. Comput. Graph. Forum J. 35. ISSN 1467-8659

    Article  Google Scholar 

  21. Meijer, J., van de Pol, J.: Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Reachability Analysis, NASA Formal Methods, vol. 9690, pp. 255–271. LNCS, Springer (2016)

    Google Scholar 

  22. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceeding of the 24th National Conference ACM, pp. 157–172 (1969)

    Google Scholar 

  23. Chinn, P.Z., Chvátalová, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and matrices—a survey. J. Graph Theo. (2006). https://doi.org/10.1002/jgt.3190060302

    Article  MathSciNet  MATH  Google Scholar 

  24. Mafteiu-Scai, L.O.: The bandwidths of a matrix. A survey of algorithms. Ann. West Univ. Timisoara-Math. 52(2), 183–223 (2014)

    Google Scholar 

  25. Ribeiro, J.A., Gonzaga de Oliveira, S.L.: Uma Revisao Sistematica Sobre Algoritmos Paralelos´ Para os Problemas de Reducoes de Largura de Banda e de Profile de Matrizes. In: XLIX Simpósio Brasileiro de Pesquisa Operacional Blumenau-SC, 27 a 30 de Agosto de 2017 (2017)

    Google Scholar 

  26. Runco, M.A., Jaeger, G.J.: The standard definition of creativity. Creativity Res. J. 24(1), 92–96 (2012). ISSN 1040-0419

    Article  Google Scholar 

  27. Lytton, H.: Creativity and Education. Routlegde (2012). ISBN 978-0-415-67549-9

    Book  Google Scholar 

  28. Sawyer, R.K.: Explaining creativity. In: The Science of Human Innovation, 2nd edn (2012). ISBN-10 0199737576

    Google Scholar 

  29. Colton, S., Wiggins, G.A.: Computational creativity: the final frontieer? In: De Raedt, L., Bessiere, C., Dubois, D. (eds.) ECAI 2012: 20th European Conference on Artificial Intelligence (2012)

    Google Scholar 

  30. Gero, J.S., Maher, M.L.: Modeling Creativity and Knowledge-Based Creative Design. Lawrence Publisher (1993). ISBN 0-8058-1153-2

    Google Scholar 

  31. Merrick, K.E., Isaacs, A., Barlow, M., Gu, N.: A shape grammar approach to computational creativity and procedural content generation in massively multiplayer online role playing games. Entertain. Comput. 4(2), 115–130 (2013)

    Article  Google Scholar 

  32. Pinel, F., Varshney, L.R.: Computational creativity for culinary recipes. ACM Proc. CHI EA 14, 439–442 (2014). ISBN 978-1-4503-2474-8

    Google Scholar 

  33. McDermott, J.: Functional representations of music. In: Proceedings of the Third International Conference on Computational Creativity (2012). ISBN 978-1-905254668

    Google Scholar 

  34. Fen, L.H.: A review on the pragmatic approaches in educating and learning creativity. Int. J. Res. Stud. Educ. Technol. 1(1), 13–24 (2012). ISSN 2243-7738

    Google Scholar 

  35. Osborn, A.F.: Applied Imagination. Principles and Procedures of Creative Problem Solving. Charles Scribner’s Sons, New York, NY (1963)

    Google Scholar 

  36. Furnham, A.: The Brainstorming Myth. Wiley (2003). https://doi.org/10.1111/1467-8616.00154

    Article  Google Scholar 

  37. Dennis, A.R., Williams, M.L.: Electronic brainstorming: theory, research and future directions. In: Arlington, B. (eds.) Group Creativity: Innovation through Collaboration. Oxford University Press (2003)

    Google Scholar 

  38. Boden, M.A.: Creativity and artificial intelligence. Artif. Intell. 103, 347–356 (1998). Elsevier

    Article  MathSciNet  MATH  Google Scholar 

  39. Shi, Y.: Brain storm optimization algorithm. Adv. Swarm Intell. LNCS 6728, 303–309 (2011). Springer

    Google Scholar 

  40. Xue, J., Wu, Y., Shi, Y., Cheng, S.: Brain storm optimization algorithm for multi-objective optimization problems. ICSI 2012. LNCS 7331 (2012). Springer

    Google Scholar 

  41. Zhan, Z., Zhang, J., Shi, Y., Liu, H.: A modified brain storm optimization. In: 2012 IEEE Congress on Evolutionary Computation (2012). https://doi.org/10.1109/cec.2012.6256594. IEEE

  42. Duan, H., Li, S., Shi, Y.: Predator–prey brain storm optimization for DC brushless motor. IEEE Trans. Magn. 49(10) (2013). https://doi.org/10.1109/tmag.2013.2262296, IEEE

    Article  Google Scholar 

  43. Duan, H., Li, C.: Quantum-behaved brain storm optimization approach to solving Loney’s solenoid problem. IEEE Trans. Magn. 51(1) (2015)

    Google Scholar 

  44. Sun, C., Duan, H., Shi, Y.: Optimal satellite formation reconfiguration based on closed-loop brain storm optimization. IEEE Comput. Intell. Mag. 8(4) (2013). https://doi.org/10.1109/mci.2013.2279560. IEEE

    Article  Google Scholar 

  45. Qiu, H., Duan, H.: Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dyn. 78, 1973 (2014). https://doi.org/10.1007/s11071-014-1579-7. Springer

    Article  Google Scholar 

  46. Li, J., Duan, H.: Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system. Aerosp. Sci. Technol. 42 (2015)

    Article  Google Scholar 

  47. Chen, J., Cheng, S., Chen, Y., Xie, Y., Shi, Y.: Enhanced brain storm optimization algorithm for wireless sensor networks deployment. In: ICSI 2015, vol. 9140. Springer (2015)

    Google Scholar 

  48. Mafteiu-Scai, L.O.: A new approach for solving equations systems inspired from brainstorming. IJNCAA 5(1), 10–18 (2015). ISSN 2412-3587

    Article  Google Scholar 

  49. Jia, Z., Duan, H., Shi, Y.: Hybrid brain storm optimisation and simulated annealing algorithm for continuous optimization problems. Int. J. Bio-Inspired Comput. 8(2) (2016)

    Article  Google Scholar 

  50. Jiandong, D., Lupeng, C., Qian, S., Jing, W., Teng, M., Fuping, Y.: Optimal scheduling strategy of active distribution system using brain storm optimisation algorithm. In: The 6th International Conference on Renewable Power Generation (RPG) (2017)

    Article  Google Scholar 

  51. Xia, Y., Huang, J.S., Tang, W., Wu, D.: Quantum brain storm optimization of GaN power amplifier design. In: 2017 International Conference on Computer Science and Application Engineering (CSAE 2017) (2017). ISBN 978-1-60595-505-6

    Google Scholar 

  52. Chen, W., Cao, Y.Y., Sun, Y., Liu, Q., Li, Y.: Improving Brain Storm Optimization Algorithm via Simplex Search (2017). arXiv preprint arXiv:1712.03166

  53. Cheng, S., Qin, Q., Chen, J., et al.: Brain storm optimization algorithm: a review. Artif. Intell. Rev. 46, 445 (2016). https://doi.org/10.1007/s10462-016-9471-0

    Article  Google Scholar 

  54. Cheng, S., Sun, Y., Chen, J., Qin, Q., Chu, X., Lei, X., Shi, Y.: A comprehensive survey of brain storm optimization algorithms. In: Evolutionary Computation (CEC). IEEE, San Sebastian, Spain (2017). https://doi.org/10.1109/cec.2017.7969498

  55. Gilliss, N., Glineur, F.: A continuous characterization of the maximum-edge biclique problem, ACM DL. J Global Optim. Arch. 58(3), 439–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discrete Appl. Math. 145, 11–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sim, K., Li, J., Gopalkrishnan, V., Liu, G.: Mining maximal quasi-bicliques: novel algorithm and applications in the stock market and protein networks. Stat. Anal. Data Min. 2(4), 255–273 (2009)

    Article  MathSciNet  Google Scholar 

  58. Miklosko, J., Kotov, V.J.: Algorithms, Software and Hardware of Parallel Computers. Springer Science & Business Media (2013). ISBN 9783662111062

    Google Scholar 

  59. Malek, M., Guruswamy, M., Pandya, M.: Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Ann. Oper. Res. 21, 59–84 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  60. Mafteiu-Scai, L.O.: Interchange opportunity in average bandwidth reduction in sparse matrix. West Univ. Timisoara Ann. (2012). ISSN 1841-3293

    Google Scholar 

  61. Mafteiu-Scai, L.O., Negru, V., Zaharie, D., Aritoni, O.: Average bandwidth reduction in sparse matrices using hybrid heuristics-extended version. In: Proc. KEPT, 379–389 (2011). ISSN 2067-1180

    Google Scholar 

  62. Cao, Z., Rong, X., Du, Z.: An improved brain storm optimization with dynamic clustering strategy. In: ICMME 2016 (2017) https://doi.org/10.1051/matecconf/20179519002

    Article  Google Scholar 

  63. http://math.nist.gov/67/data/Harwell-Boeings

  64. Deb, K., Saha, A.: Finding Multiple Solutions for Multimodal Optimization Problems Using a Multi-Objective Evolutionary Approach (2010) (GECCO 2010, In press)

    Google Scholar 

  65. Pintea, C.M., Crisan, G.C., Chira, C.: A hybrid ACO approach to the matrix bandwidth minimization problem. In: M. Graa Romay et al. (eds.) HAIS 2010, Part I, LNAI 6076, pp. 407–414. Springer (2010)

    Google Scholar 

  66. Mafteiu-Scai, L.O., Cornigeanu, C.A.: A parallel heuristic for bandwidth reduction based on matrix geometry. In: SYNASC Timisoara, 2016. IEEE (2017). https://doi.org/10.1109/synasc.2016.058. ISSN 2470-881X

  67. Ikotun Abiodun, M., Lawal Olawale, N., Adelokun, Adebowale, P.: The effectiveness of genetic algorithm in solving simultaneous equations. Int. J. Comput. Appl. 14(8), 0975–8887 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Mafteiu-Scai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mafteiu-Scai, L., Mafteiu, E., Mafteiu-Scai, R. (2019). Brain Storm Optimization Algorithms for Solving Equations Systems. In: Cheng, S., Shi, Y. (eds) Brain Storm Optimization Algorithms. Adaptation, Learning, and Optimization, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-15070-9_8

Download citation

Publish with us

Policies and ethics