Advertisement

Classical Genetics and Traditional Breeding

Chapter
  • 167 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Much progress has been attempted in classical genetics and traditional breeding of bitter gourd which are mainly related to qualitative traits but significant advancement in several quantitative traits is difficult to achieve. The main purpose of this chapter is to highlight some of the key concepts that lay the genetical foundations for bitter gourd breeding. The study on classical genetics of bitter gourd has added an advantage to the breeders in the development of new varieties and F1 hybrids for earliness and higher productivity due to the involvement of gynoecious lines as one of the parents in breeding of these varieties. The selection based on morphological traits for high and stable yield requires the evaluation of germplasm in multiple environments over several seasons; which is very expensive and time-consuming process. Molecular markers technology have great potential to overcome many of the obstacles presented by traditional breeding techniques, but it is imperative that the development and utilization of these markers works in conjunction with traditional breeders who have necessary skill to evaluate the germplasm lines of economic value. Marker-assisted selection (MAS) certainly accelerates the breeding process and is a powerful tool for selecting for desirable traits. The construction of a genetic map is a common approach to detect quantitative trait loci (QTLs) for genetic improvement of bitter gourd.

Keywords

Bitter gourd Traditional breeding Classical genetics Molecular markers Genetic improvement 

References

  1. Adarsh A, Kumar R, Singh HK, Bhardwaj A (2018) Heterosis study in bitter gourd for earliness and qualitative traits. Intl J Curr Microbiol Appl Sci 7:4239–4245Google Scholar
  2. Ahmed I, Lakhani MS, Gillett M, John A, Raza H (2001) Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordicacharantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diab Res Clin Pract 51:155–161.  https://doi.org/10.1016/s0168-8227(00)00224-2PubMedCrossRefGoogle Scholar
  3. Alhariri A, Behera TK, Munshi AD, Bharadwaj C, Jat GS (2018) Exploiting gynoecious line for earliness and yield traits in bitter gourd (Momoredicacharantia L.). Int J Curr Microbiol Appl Sci 7(11):922–928CrossRefGoogle Scholar
  4. Arunachalam P (2002) Breeding for resistance to distortion mosaic virus in bitter gourd (Momordica charantia L.). Ph.D. thesis, Faculty of Agriculture, Kerala Agriculture University, Kerala, IndiaGoogle Scholar
  5. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376.  https://doi.org/10.1371/journal.pone.0003376CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bates DM, Merrick LC, Robinson RW (1995) Minor cucurbits. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Wiley, New York, p 110Google Scholar
  7. Behera TK (2005) Heterosis in bittergourd. J New Seeds 6(2):217–221CrossRefGoogle Scholar
  8. Behera TK, Behera S, Bharathi LK, John KJ, Simon PW, Staub JE (2010) Bitter gourd: botany, horticulture and breeding. Hort Rev 37:101–141Google Scholar
  9. Behera TK, Dey SS, Munshi AD, Gaikwad AB, Pal A, Singh I (2009) Sex inheritance and development of gynoecious hybrids in bitter gourd (Momordicacharantia L.). Sci Hort 120:130–133CrossRefGoogle Scholar
  10. Behera TK, Rao AR, Amarnath R, Kumar RR (2016) Comparative transcriptome analysis of female and hermaphrodite flower buds in bitter gourd (Momordica charantia L.) by RNA sequencing. J Hort Sci Biotechnol 91(3):250–257.  https://doi.org/10.1080/14620316.2016.1160540CrossRefGoogle Scholar
  11. Behera TK, Dey SS, Sirohi PS (2006) DBGy-201and DBGy-202: two gynoecious lines in bitter gourd (Momordica charantia L.) isolated from indigenous source. Indian J Genet 66:61–62Google Scholar
  12. Behera TK (2004) Heterosis in bittergourd. In: Singh PK, Dasgupta SK, Thpathi SK (eds) Hybrid vegetable development. Haworth Press, New York, pp 217–221CrossRefGoogle Scholar
  13. Bharathi LK, Naik G, Dora DK (2005) Genetic divergence in spine gourd. Veg Sci 32(2):179–81Google Scholar
  14. Bhatt L, Singh SP, Soni AK, Samota MK (2017) Combining ability studies in bitter gourd (Momordica charantia L.) for quantitative characters. Int J Curr Microbiol Appl Sci 6(7):4471–4478CrossRefGoogle Scholar
  15. Celine VA, Sirohi PS (1998) Generation mean analysis for earliness and yield in bitter gourd (Momordica charantia L.). Veg Sci 25:51–54Google Scholar
  16. Chaudhari SM, Kale PN (1991) Studios on heterosis in bitter gourd (Momordica charantia L.). Maha J Hort 5:45–51Google Scholar
  17. Chelliah S (1970) Host influence on the development of melon fly (Dacus cucurbitae Coquillett). Indian J Entomol 32:381–383Google Scholar
  18. Chen Q, Chan LL, Li ET (2003) Bitter melon (Momordica charantia) reduces adiposity lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 133:1088–1093.  https://doi.org/10.1093/jn/133.4.1088CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cho Y, Ozaki Y, Okubo H, Matsuda S (2006) Ploidies of kakrol (Momordica dioca Roxb.) cultivated in Bangaladesh. Sci Bull Fac Agri Kyushu Univ 61:49–53Google Scholar
  20. Chowdhury AR, Sikdar B (2005) Genetic analysis for nine fruit characters in relation to five parental diallel crossing of bitter gourd. J Life Earth Sci 1:31–34Google Scholar
  21. Cui J, Luo S, Niu Y, Huang R, Wen Q, Su J, Miao N, He W, Dong Z, Cheng J, Hu K (2018) A RAD-based genetic map for anchoring scaffold sequences and identifying QTLs in bitter gourd (Momordica charantia). Front Plant Sci 9:477.  https://doi.org/10.3389/fpls.2018.00477CrossRefPubMedPubMedCentralGoogle Scholar
  22. Dalamu, Behera TK, Satyavati TC, Pal A (2012) Generation mean analysis of yield related traits and inheritance of fruit colour and surface in bitter gourd. Indian J Hort 69:65–69Google Scholar
  23. Devadas VS, Ramadas S (1994) Combining ability for yield components in bitter gourd (Momordica charantia L.) Hort J 6:103–108Google Scholar
  24. Dey SS, Behera TK, Munshi AD, Pal A (2009) Gynoecious inbred with better combining ability improves yield and earliness in bitter gourd (Momordica charantia L.). Euphytica 173(1):37–47CrossRefGoogle Scholar
  25. Dey SS, Behera TK, Munshi AD, Rakshit S, Bhatia R (2012) Utility of gynoecious sex form in heterosis breeding of bitter gourd and genetics of associated vegetative and flowering traits. Indian J Hort 69(4):523–529Google Scholar
  26. Dhillon MK, Singh R, Naresh JS, Sharma NK (2005) Influence of physico-chemical traits of bitter gourd, Momordica chamntia L. on lanai density and resistance to melon-fruit fly, Boctrocem cucurbitae (Coquillett). J Appl Entomol 129:393–399CrossRefGoogle Scholar
  27. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.  https://doi.org/10.1371/journal.pone.0019379CrossRefPubMedPubMedCentralGoogle Scholar
  28. Esquinas-Alcazar JT, Gulick PJ (1983) Genetic resources of Cucurbitaceae. AGPGR: IBPGR/83/48:20Google Scholar
  29. Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Meth Mol Biol 772:157–178.  https://doi.org/10.1007/978-1-61779-228-1_9CrossRefGoogle Scholar
  30. Gaikwad AB, Saxena S, Behera TK, Archak S, Meshram SU (2014). Molecular marker to identify gynoecious lines in bitter gourd. Indian J Horticulture 71(1):142–144Google Scholar
  31. Ganguly C, De S, Das S (2000) Prevention of carcinogen induced mouse skin papilloma by whole fruit aqueous extract of Momordica charantia. Eur J Cancer Prev 9:283–288.  https://doi.org/10.1097/00008469-200008000-00009CrossRefPubMedGoogle Scholar
  32. Gunnaiah R, Vinod MS, Prasad K, Elangovan M (2014) Identification of candidate genes, governing gynoecy in bitter gourd (Momordica Charantia L.). In: Silico gene expression analysis. National conference cum workshop on bioinformatics and computational biology, NCWBCB- 2014. Int J Comput Appl 5–9Google Scholar
  33. Guo DL, Zhang JP, Xue YM, Hou XG (2012) Isolation and characterization of 10 SSR markers of Momordicacharantia (Cucurbitaceae). Am J Bot 99:e182–e183.  https://doi.org/10.3732/ajb.1100277CrossRefPubMedGoogle Scholar
  34. Hollingsworth R, Vagalo M, Tsatsia F (1997) Biology of melon fly with special reference to the Solomon Islands. In: Allwood AJ, Drew RAI (eds) Management of fruit flies in the Pacific (Proc Aust Country Ind Agri Res 76:140–144)Google Scholar
  35. Hossain MA, Islam M, Ali M (1996) Sexual crossing between two genetically female plants and sex genetics of kakrol (Momordica dioica Roxb.) Euphytica 90(1):121–125Google Scholar
  36. Huang HY, Hsieh CH (2017) Genetic research on fruit color traits of the bitter gourd (Momordica charantia L.). Hort J.  https://doi.org/10.2503/hortj.mi-159
  37. Hu KL, Fu QM, Wang GP (2002) Study on the heredity of fruit color of Monordica charantia. China Veg 2002:11–12Google Scholar
  38. Islam MR, Hossain MS, Buiyan MSR, Husna A, Syed MA (2009) Genetic variability and path coefficient analysis of bitter gourd (Momordica charantia L.). Int J Sustain Agri 1(3):53–57Google Scholar
  39. Iwamoto B, Ishida T (2006) Development of gynoecious inbred line in balsam pear (Momordica charantia L.). Hort Res (Japan) 5:101–104CrossRefGoogle Scholar
  40. Jadhav KA, Garad BV, Dhumal SS, Kshirsagar DB, Patil BT Shinde KG (2009) Heterosis in bitter Gourd (Momordica charantia L.). Agri Sci Digest 29(1):7–11Google Scholar
  41. Jayasooriya AP, Sakono M, Yukizaki C, Kawano M, Yamamoto K, Fukuda N (2000) Effects of Momordicacharantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol enriched diets. J Ethnopharmacol 72:331–336PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kadir ZBA, Zahoor M (1965) Colchiploidy in Momordicacharantia L. Sind Uni Res J 1–53Google Scholar
  43. Khattra AS, Singh R, Thakur JC (2000) Combining ability studies in bitter gourd in relation to line× tester crossing system. Veg Sci 27:148–151Google Scholar
  44. Kim ZH, Kim YR (1990) Inheritance of fruit weight in bitter-gourd (Mornordica charantia L.). J Korean Soc Hort Sci 31:238–246Google Scholar
  45. Kole C, Olukolu BA, Kole P, Rao VK, Bajpai A, Backiyarani S, Singh J, Elanchezhian R, Abbott Albert G (2012) The first genetic map and positions of major fruit trait loci of bitter melon (Momordica charantia). J Plant Sci Mol Breed  https://doi.org/10.7243/2050-2389-1-1CrossRefGoogle Scholar
  46. Krishnaiah D, Sarbatly R, Nithyanandam R (2011) A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 89:217–233CrossRefGoogle Scholar
  47. Kumar D, Pathak M (2018) Estimation of heterosis and combining ability for biochemical traits in bitter gourd (Momordicacharantia L.). Int J Chem Stud 6(2):2579–2585Google Scholar
  48. Kumara BS, Puttaraju TB, Hongal S, Prakash K, Jainag K, Sudheesh NK et al (2011) Combining ability studies in bitter gourd (Momordica charantia L.) for quantitative characters. Asian J Hort 6:135–140Google Scholar
  49. Kumari M, Behera TK, Munshi AD, Talukadar A (2015) Inheritance of fruit traits and generation mean analysis for estimation of horticultural traits in bitter gourd. Indian J Hort 72(1):43–48CrossRefGoogle Scholar
  50. Lawande KE, Patil AV (1989) Studies on heterosis as influenced by combining ability in bitter gourd. Veg Sci 6:49Google Scholar
  51. Lee HS, Huang PL, Huang PL, Bourinbaiar AS, Chen HC, Kung HF (1995) Inhibition of the integrase of human immuno-deficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31. Proc Natl Acad Sci USA 92:8818–8822.  https://doi.org/10.1073/pnas.92.19.8818CrossRefGoogle Scholar
  52. Leung KC, Meng ZQ, Ho WKK (1997) Antigenic determination fragments of α-momorcharin. Biochem Biophys Acta 1336:419–424PubMedCrossRefPubMedCentralGoogle Scholar
  53. Liou TD, Chen KS, Lee SF, Lin JNT, Sao SJ, Yang YW (2002) Tangshan 036’, a white bitter gourd cultivar. HortScience 37:1142–1143CrossRefGoogle Scholar
  54. Liu ZG, Long MM, Qin RY, Wang XY (2005) Studies on genetic variation, correlation and path analysis in bitter gourd (Mornordica charantia L.). Guan Bot 25:426–430Google Scholar
  55. Matsumura H, Miyagi N, Taniai N, Fukushima M, Tarora K et al (2014) Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-Seq analysis. PLoS ONE 9(1):e87138.  https://doi.org/10.1371/journal.pone.0087138CrossRefPubMedPubMedCentralGoogle Scholar
  56. Miniraj N, Prasanna KP, Peter KV (1993) Bitter gourd (Momordica spp.). In: Kalloo C, Bergh BO (eds) Genetic improvement of vegetable plants. Pergamon Press, Oxford, UK, pp 239–246Google Scholar
  57. Mishra S, Behera TK, Munshi AD, Gaikwad K, Mohapatra T (2015) Identification of RAPD marker associated with gynoecious trait (gy-1gene) in bitter gourd (Momordica charantia L.) Aust J Crop Sci 8(5):706–710Google Scholar
  58. Mishra HN, Mishra RS, Parhi G, Mishra NS (1998) Diallel analysis for variability in bitter gourd (Momordica charantia L.). Indian J Agri Sci 68:18–20Google Scholar
  59. Myojin C, Enami N, Nagata A, Yamaguchi T, Takamura H, Matoba T (2008) Changes in the radical-scavenging activity of bitter gourd (Momordica charantia L.) during freezing and frozen storage with or without blanching. J Food Sci 73:46–50CrossRefGoogle Scholar
  60. Nicoli MC, Anese M, Parpinel M, Kubola J, Siriamornpun S (2008) Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit extracts in vitro. Food Chem 110:881–890CrossRefGoogle Scholar
  61. Okabe H, Miyahara Y, Yamauchi T, Mirahara K, Kawasaki T (1980) Studies on the constituents of Momordica charantia L. Isolation and characterization of momordicosides A and B, glycosides of a pentahydroxy-cucurbitanetriterpene. Chem Pharm Bull 28:2753–2762CrossRefGoogle Scholar
  62. Pal HP, Singh H (1946) Studies in hybrid vigour. II. Notes on the manifestation of hybrid vigour in the brinjal and bitter gourd. Indian J Genet 6:19–33Google Scholar
  63. Panda A, Singh DK, Bairagi SK (2008) Study of combining ability for the production of bitter gourd hybrids. Prog Hort 40:33–37Google Scholar
  64. Parhi G, Mishra HN, Mishra RS (1995) Correlation and path coefficient studies in bitter gourd. Indian J Hort 52(2):132–136Google Scholar
  65. Rabindranath K, Pillai KS (1986) Control of fruit fly of bitter gourd using synthetic pyrethroids. Entomon 11:269–272Google Scholar
  66. Raja S, Bagle BG, Dhandar DG (2007) Genetic variability studies in bitter gourd for zero irrigated condition of semi-arid ecosystem. Indian J Hort 64(4):425–429Google Scholar
  67. Ram D, Kumar S, Singh M, Rai M, Kalloo G (2006) Inheritance of gynoecism in bitter gourd (Momordica charantia L.). J Hered 97:294–295PubMedCrossRefPubMedCentralGoogle Scholar
  68. Ram D, Kumar S, Banerjee MK, Kellen G (2002) Occurrence, identification and preliminary characterisation of gynoecism in bitter gourd (Momordica charantia L.). Indian J Agri Sci 72:348–349Google Scholar
  69. Ramachandran C, Gopalkrishnan PK (1979) Correlation and regression studies in bitter gourd. Indian J Agri Sci 49(11):850–854Google Scholar
  70. Rao GP, Behera TK, Gaikwad AB, Munshi AD, Jat GS, Krishnan B (2018) Mapping and QTL analysis of gynoecy and earliness in bitter gourd (Momordica charantia L.) using genotyping-by-sequencing (GBS) technology. Front Plant Sci 9:1555.  https://doi.org/10.3389/fpls.2018.01555
  71. Reyes MEC, Rasco ET (1994) Induction and inheritance of restricted vine growth mutant in bittergourd (Momordica charantia L.). University Library, University of the Philippines at Los Baños PÁGINA DE INICIO: http://www.uplb.edu.ph
  72. Robinson RW, Decker-Walters DS (1997) Cucurbits. CABI Publishing, Cambridge, MAGoogle Scholar
  73. Saito K (1957) Studies on the induction of polyploidy in some cucurbits and its utilization: II. On polyploid plants of bitter gourd. Jpn J Breed 6:217–220CrossRefGoogle Scholar
  74. Sanwal SK, Kozak M, Kumar S, Singh B, Deka BC (2011) Yield improvement through female homosexual hybrids and sex genetics of sweet gourd (MomordicacochinchinensisSpreng.) Acta Physiol Plant 33(5):1991–1996CrossRefGoogle Scholar
  75. Sharma NK, Bhutani RD (2001) Correlation and path analysis studies in bitter gourd (Momordica charantia). Hary J Hort Sci 30:84–86Google Scholar
  76. Shukla A, Singh U, Rai AK, Bhardwaj DR, Singh M (2014) Genetic analysis of yield and yield attributing traits in bitter gourd. Veg Sci 41:37–41Google Scholar
  77. Shukla A, Singh VK, Bharadwaj DR, Kumar R, Rai A, Rai AK et al (2015) De Novo assembly of bitter gourd transcriptomes: gene expression and sequence variations in gynoecious and monoeciouslines. PLoS ONE 10(6):e0128331.  https://doi.org/10.1371/journal.pone.0128331CrossRefPubMedPubMedCentralGoogle Scholar
  78. Singh AK, Pan RS, Bhavana P (2013) Heterosis and combining ability analysis in bitter gourd (Momordica charantia L.). Bioscan 8:1533–1536Google Scholar
  79. Singh B, Joshi S (1980) Heterosis and combining ability in bitter gourd. Indian J Agri Sci 50:558–561Google Scholar
  80. Singh SK, Ram HH (2005) Seed quality attributes in bitter gourd (Momordica charantia L.). Seed Res 33:92–95Google Scholar
  81. Sirohi PS (1997) Improvement in cucurbit vegetables. Indian Hort 42:64–67Google Scholar
  82. Sirohi PS (2000) Pusa hybrid 1: new bitter gourd hybrid. Indian Hort 44:30–31Google Scholar
  83. Sirohi PS, Choudhury B (1983) Diallelanalysis of variability in bitter gourd. Indian J Agri Sci 53:880–888Google Scholar
  84. Srivastava VK, Nath P (1972) Inheritance of some qualitative characters in Momordica charantia L. Indian J Hort 29:319–321Google Scholar
  85. Srivastava VK, Srivastava LC (1976) Genetic parameter correlation coefficient and path coefficient analysis in bitter gourd (Momordica charantia L.). Indian J Horticulture 33:66–70Google Scholar
  86. Staub JE, Grumet R (1993) Selection for multiple disease resistance reduces cucumber yield potential. Euphytica 67:205–213CrossRefGoogle Scholar
  87. Sundharaiya K, Shakila A (2011) Line x tester analysis in bitter gourd (Momordicacharantia L.). Adv Plant Sci 24:637–641Google Scholar
  88. Suribabu B, Reddy NE, Ramarao M (1986) Inheritance of certain quantitative and qualitative characters in bitter gourd (Momordica charantia L.). South Indian Hort 34:380–382Google Scholar
  89. Tang J, Leunissen JA, Voorrips RE, van der Linden CG, Vosman B (2008) HaploSNPer: a web-based allele and SNP detection tool. BMC Genet. 9:23 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tewatia AS, Dhankar B S (1996) Inheritance of resistance to melon fruit fly (Bactrocera cucurbitae) in bitter gourd (Momordica charantia L.). Indian J Agr Sci 66:617–620Google Scholar
  91. Tewatia AS, Dhankhar BS, Dhankhar SK (1997) Growth and yield characteristics of melon fruit fly resistant and highly susceptible genotypes of bitter gourd—a note. Hary J Hort Sci 25:253–255Google Scholar
  92. Thangamani C (2016) Genetic analysis in bitter gourd (Momordica charantia L.) for yield and component characters. Asian J Hort 11(2):313–318CrossRefGoogle Scholar
  93. Thangamani C, Pugalendhi L (2013) Heterosis studies in bitter gourd for yield and related characters. Int J Veg Sci 19:109–125CrossRefGoogle Scholar
  94. Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M, Sakamoto M, Terauchi R, Matsumura H (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24(1):51–58Google Scholar
  95. Vahab MA (1989) Homeostatic analysis of components of genetic variance and inheritance of fruit colour, fruit shape, and bitterness in bitter gourd (Momordica charantia L.). Ph.D. Thesis, Kerala Agri Univ, IndiaGoogle Scholar
  96. Varalakshmi B, Pitchaimuthu M, Rao ES, Krishnamurthy D, Suchitha Y, Manjunath KSS (2014) Identification preliminary characterization and maintenance of gynoecious plants, IIHRBTGy-491 and IIHRBTGy-492 in bitter gourd. Int Bitter Gourd Conf (BiG2014). Hyderabad, March, AVRDC at ICRISAT, p 36Google Scholar
  97. Wang SZ, Pan L, Hu K, Chen CY, Ding Y (2010) Development and characterization of polymorphic microsatellite markers in Momordica charantia (Cucurbitaceae). Am J Bot 97:e75–e78.  https://doi.org/10.3732/ajb.1000153.16CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wang Z, Xiang C (2013) Genetic mapping of QTLs for horticulture traits in a F2-3 population of bitter gourd (Momordica charantia L.). Euphytica 193:235–250CrossRefGoogle Scholar
  99. Yeh GY, Eisenber DM, Kaptchuk TJ, Phillips RS (2003) Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diab Care 26:1277–1294CrossRefGoogle Scholar
  100. Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA et al (2002) Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci 42:271–277PubMedCrossRefPubMedCentralGoogle Scholar
  101. Zhang C, Luo S, Goo J, Zheng X, Lao H, Man J (2006) Study on the genetic effects of fruit length of bitter gourd. Guan Agri Sci 1:34–35Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Vegetable ScienceICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Vegetable SciencePunjab Agricultural UniversityLudhianaIndia

Personalised recommendations