Tissue Culture, Genetic Engineering, and Nanotechnology in Bitter Gourd

Part of the Compendium of Plant Genomes book series (CPG)


Bitter gourd (Momordica charantia L.) belongs to the genus Momordica that includes 45 species. It is cultivated extensively in tropical, subtropical, and rarely under temperate climates. The plant is valued in various disciplines of life and natural sciences. It is extensively used for culinary purposes. Its extracts are important for the treatment of a number of diseases and ailments in traditional and modern medicinal systems because of the abundance of insulin-like peptides, a mixture of steroidal sapogenins and alkaloids. It is rarely used as an ornamental plant. There are very few reports on systematic research on agronomic, breeding, and biotechnological aspects that curtail the improvement of this crop plant. This chapter reviews available information on biotechnology in a bitter gourd that will help understand the current scenario and help in making plans for improvement of bitter gourd.


Acclimatization Biotechnology Micropropagation Pharmaceutical uses Secondary metabolites 


  1. Agarwal M, Kamal R (2004) Studies on steroid production using in vitro cultures of Momordica charantia. J Med Arom Plant Sci 26:318–323Google Scholar
  2. Al Munsur MAZ, Haque MS, Nasiruddin KM, Hasan MJ (2007) Regeneration of bitter gourd (Momordica charantia L.) from leaf segments and root tips. Prog Agri 18(2):1–9Google Scholar
  3. Al Munsur MAZ, Haque MS, Nasiruddin KM, Hossain MS (2009) In vitro propagation of bitter gourd (Momordica charantia L.) from nodal and root segments. Plant Tissue Cult Biotechnol 19(1):45–52CrossRefGoogle Scholar
  4. Basch E, Gabardi S, Ulbricht C (2003) Bitter melon (Momordica charantia): a review of efficacy and safety. Amer J Health Syst Pharm 60:356–359CrossRefGoogle Scholar
  5. Behera TK, Singh AK, Staub JE (2008b) Comparative analysis of genetic diversity in Indian bitter gourd (Momordica charantia L.) using RAPD and ISSR markers for developing crop improvement strategies. Sci Hort 115(3):209–217CrossRefGoogle Scholar
  6. Behera TK, Gaikward AB, Singh AK, Staub JE (2008a) Relative efficiency of DNA markers (RAPD, ISSR and AFLP) in detecting genetic diversity of bitter gourd (Momordica charantia L.). J Sci Food Agri 88(4):733–737CrossRefGoogle Scholar
  7. Beloin N, Gbeassor M, Akpagana K, Hudson J, Soussa KD, Koumaglo K, Arnason JT (2005) Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J Ethnol Pharmocol 96:49–55Google Scholar
  8. Chakravarty HL (1990) Cucurbits of India and their role in the development of vegetable crops. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of Cucurbitaceae. Cornell University Press, Ithaca, NY, pp 325–334Google Scholar
  9. Chen JC, Bik-San Lau C, Chan JYW, Fung KP, Leung PC, Liu JQ, Zhou L, Xie MJ, Qiu MH (2015) The antigluconeogenic activity of cucurbitacins from Momordica charantia. Planta Med 81(04):327–332PubMedCrossRefPubMedCentralGoogle Scholar
  10. Decker-Walters DS (1999) Cucurbits, Sanskrit, and the Indo. Aryas Econ Flot 53:98–112Google Scholar
  11. Desai UT, Musmade AM (1998) Pumpkins, squashes and gourds. In: Salunkhe DK, Kadam SS (eds) Handbook of vegetable science and technology: production, composition, storage and processing. Marcel Dekker Publishers, New York, pp 273–298Google Scholar
  12. Dhivya G, Rajasimman M (2015) Synthesis of silver nanoparticles using Momordica charantia and its applications. J Chem Pharm Res 7:107–113Google Scholar
  13. Ekezie FGC, Jessie Suneetha W, Uma Maheswari K, Prasad TNVKV, Anila KB (2016) Momordica charantia extracts in selected media: screening of phytochemical content and in vitro evaluation of anti-diabetic properties. Indian J Nutr Diet 53(2):164CrossRefGoogle Scholar
  14. Fonseka HH, Chandrasekara A, Fonseka RM, Wickramasinghe P, Kumara PDRSP, Wickramarachchi WNC (2007) Determination of anti-amylase and anti-glucosidase activity of different genotypes of bitter gourd (Momordica charantia L.) and thumba karavila (Momordica dioica L.). Acta Hort 752:131–136CrossRefGoogle Scholar
  15. Ghosh S, Basu PS (1982) Effect of some growth regulators on sex expression of Momordica charantia. Sci Hort 17:107–112CrossRefGoogle Scholar
  16. Heiser CB (1979) The Gourd Book. University of Oklahoma Press, Norman, OKGoogle Scholar
  17. Huda AKMN, Sikdar B (2006) In vitro plant production through apical meristem culture of bitter gourd (Momordica charantia L.). Plant Tissue Cult Biotechnol 16(1):31–36Google Scholar
  18. Jiratchariyakul W, Wiwat C, Vongsakul M, Somanabandhu A, Leelamanit W, Fujii I, Suwannaroj N, Ebizuka Y, Weena J, Chanpen W, Molvibha V, Somanabandhu A, Leelamanit W, Suwannarol N (2001) HIV inhibitor from Thai bitter gourd. Planta Med 67(4):350–353PubMedCrossRefPubMedCentralGoogle Scholar
  19. Kale AA, Cadakh SR, Adsule RN (1991) Physico-chemical characteristics of improved varieties of bittergourd (Momordica charantia L.). Maharashtra J Hort 5:56–59Google Scholar
  20. Karim MA, Ahmed SU (2010) Somatic embryogenesis and micro propagation in teasle gourd. Int J Environ Sci Dev 1(1):10–14CrossRefGoogle Scholar
  21. Khan MR, Omoloso AD (1998) Momordica charantia and Allium sativum: broad spectrum antibacterial activity. Kor J Pharmacog 29:155–158Google Scholar
  22. Kirtikar KR, Basu BD (1994) Momordica charantia Linn. In: Singh B, Signh MP (eds) Indian medicinal plants, vol. II, Dehra Dun. Lalit Mohan Basu, Allahabad, Jayyed Press, New Delhi, India, pp 1130–1132Google Scholar
  23. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13(1):37–47PubMedPubMedCentralCrossRefGoogle Scholar
  24. Larkcom J (1991) Oriental vegetables: the complete guide for garden and kitchen. John Murray, LondonGoogle Scholar
  25. Lim TK (1998) Loofahs, gourds, melons and snakebeans. In: Hyde KW (ed) The new rural industries. Rural Industries Research and Development Corporation, Canberra, AU, pp 212–218Google Scholar
  26. Marr KL, Xia YM, Bhattarai NK (2004) Allozyme, morphological and nutritional analysis bearing on the domestication of Momordica charantia L. (Cucurbitaceae). Leon Bot 58:435–455Google Scholar
  27. Miniraj N, Prasanna KP, Peter KV (1993) Bitter gourd Momordica spp. In: Kalloo C, Bergh BO (eds) Genetic improvement of vegetable plants. Pergamon Press, Oxford, UK, pp 239–246Google Scholar
  28. Muralikrishna N, Ellendula R, Kota S, Kalva B, Velivela Y, Abbagani S (2018) Efficient genetic transformation of Momordica charantia L. by microprojectile bombardment. 3 Biotechnol 8(1):2Google Scholar
  29. Naseem MZ, Patil SR, Patil SR, Ravindra, Patil SB (1998) Antispennatogenic and androgenic activities of Momordica charantia (Karela) in albino rats. J Ethnopharmacol 61(1):9–16PubMedCrossRefPubMedCentralGoogle Scholar
  30. Neuwinger HD (1994) African ethnobotany, poisons and drags. Chapman and Hall, LondonGoogle Scholar
  31. Okabe H, Miyahara Y, Yamauchi T (1982) Studies on the constituents of Momordica charantia L. III. Chem Pharm But 30:3977–3986CrossRefGoogle Scholar
  32. Parray A, Islam A (2007) Bitter gourd (Momordica charantia): a natural gift in support of the research in medicine and biotechnology. J Biotechnol 7(1):1–13Google Scholar
  33. Paul A, Mitter K, Sen RS (2009) Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia L. Plant Cell Tissue Org Cult 97:303–331CrossRefGoogle Scholar
  34. Raman A, Lau C (1996) Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine 2:349–362PubMedCrossRefGoogle Scholar
  35. Rathod V (2015) Plant regeneration in Momordica dioica (Roxb) by root explant. J Pharmacy Biol Sci 10(2):80–83Google Scholar
  36. Reyes MEC, Gildemacher BH, Jansen GJ (1994) Momordica L. In: Siemonsma JS, Piluek K (eds) Plant resources of South-East Asia: vegetables. Pudoc Scientific Publishers, Wageningon, Netherlands, pp 206–210Google Scholar
  37. Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, Wallingford, Oxford, UKGoogle Scholar
  38. Roy SK, Chakrabarti AK (2003) Vegetables of tropical climates/commercial and dietary importance. Encyclopedia of Food Sciences and Nutrition (Second Edition). 5956–5961CrossRefGoogle Scholar
  39. Safdar A, Alveena T (2013) Analysis of secondary metabolites in callus cultures of Momordica charantia cv Jaunpuri. Biologia 59(1):23–32Google Scholar
  40. Saglam S (2017) In vitro propagation of bitter gourd (Momordica charantia L.). Sci Bull Sr F Biotechnol 21:46–50Google Scholar
  41. Sikdar B, Shafiullah M, Chowdhury AR, Sharmin N, Nahar S, Joarder OI (2005) Agrobacterium-mediated GUS expression in bitter gourd (M. charantia L.). Biotechnology 4:149–152CrossRefGoogle Scholar
  42. Subratty AH, Gurib-Fakim A, Mabomoodally E (2005) Bitter melon: an exotic vegetable with medicinal values. Neu Food Sci 35:143–147Google Scholar
  43. Thiruvengadam M, Praveen N, Chung IM (2012a) An efficient Agrobacterium tumefaciens-mediated genetic transformation of bitter melon (Momordica charantia L.). Austral J Crop Sci 6(6):1094–1100Google Scholar
  44. Thiruvengadam M, Praveen N, Chung III-Min (2012b) In vitro regeneration from internodal explants of bitter melon (Momordica charantia L.) via indirect organogenesis. Afr J Biotechnol 11(32):8218–8224Google Scholar
  45. Thiruvengadam M, Rekha KT, Jayabalan N, Yang CH, Chung IM (2010) High frequency shoot regeneration from leaf explants through organogenesis of bitter melon (Momordica charantia L.). Plant Biotechnol Rep 4:321–328CrossRefGoogle Scholar
  46. Ugandhar T, Venkateshwarrlu M, Begum G, Srilatha T, Jaganmohanreddy K (2011) In vitro plant regeneration of cucumber (Cucumis sativum (L.) from cotyledon and hypocotyl explants. Sci Res Rep 1(3):164–169Google Scholar
  47. Venkateshwarlu M (2009) Direct multiple shoots proliferation of muskmelon (Cucumis melo L.) from shoot tip explants. Intl J Pharma Biosci 2(3):645–652Google Scholar
  48. Verma AK, Kumar M, Tarafdar S, Singh R, Thakur S (2014) Development of protocol for micro propagation of gynoecious bitter gourd (Momordica charantia L). Int J Plant Anim and Environ Sci 4(4):275–280Google Scholar
  49. Walters TW, Decker-Walters DS (1988) Balsampear (Momordica charantia, Cucurbitaceae). Econ Bot 42:286–286CrossRefGoogle Scholar
  50. Wang Q, Zang GW, Jiang YT (1997) Effects of temperature and photoperiod on sex expression of Momordica charantia. China Vegetables 1:1–4Google Scholar
  51. Xue Y, Song S, Chen H, Xue Y, Song SH, Chen H, Peron JY (1998) Possible anti-tumor promoting properties of bitter gourd and some Chinese vegetables. In: Third international symposium on diversification of vegetable crops, Belling, China (Acta Hort 467:55–64)Google Scholar
  52. Yang M, Zhao M, Zeng Y, Lan L, Chen F (2004) Establishment of in vitro regeneration system of bitter melon (Momordica charantia L.). High Technol Lett 10(1):44–48Google Scholar
  53. Yen GC, Hwang LS (1985) Lycopene from the seeds of ripe bitter melon (Momordica charantia) as a potential red food colorant. II. Storage stability, preparation of powdered lycopene and food application. J Chin Agri Chem Soc 23:151–161Google Scholar
  54. Yonemori S, Fujieda K (1985) Sex expression in Momordica charantia L. Sci Bull Coll Agric Univ Rynkyus, Okinawa 32:183–187Google Scholar
  55. Yuwai KR, Rao KS, Kaluwin J, Jones GP, Rivetts DE (1991) Chemical composition of Momordica charantia L. fruits. J Agri Food Chem 39:1782–1783CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Agricultural Biotechnology, Faculty of AgricultureKirsehir Ahi Evran UniversityKirsehirTurkey
  2. 2.Department of Crop Science, Faculty of AgricultureAnkara UniversityAnkaraTurkey

Personalised recommendations