Medicinal Properties of Bitter Gourd: Bioactives and Their Actions

Part of the Compendium of Plant Genomes book series (CPG)


Bitter melon (Momordica charantia L., Family: Cucurbitaceae) is traditionally used as a medicinal food in different systems of medicine. It has significant importance in providing basic nutrients and prevention of various ailments. It contains a variety of bioactive compounds including alkaloids, polypeptides, vitamins, and minerals. A diversity of bioactive compounds comprises two classes of saponins: Oleanane and Cucurbitane-type triterpenoids. The present chapter shall draw a link of the bioactive compounds to its pharmacological effects like antidiabetic, anticancer, antiviral, anti-inflammatory, analgesic, hypolipidemic, and hypocholesterolemic effects, and an insight to understand the mechanism of action.


Bitter gourd Bioactive compounds Oleanane triterpenoids Cucurbitane triterpenoids Pharmacological effects Mechanism of action 


  1. Ahmad N, Hasan N, Ahmad Z, Zishan M, Zohrameena S et al (2016) Momordica charantia: for traditional uses and pharmacological actions. J Drug Deliv Therapeut 6(2):40–44Google Scholar
  2. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M et al (2012) In vitro anti-diabetic activities and chemical analysis of polypeptide-K and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 17(8):9631–9640PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alam M, Uddin R, Subhan N, Rahman MM, Jain N et al (2015) Beneficial role of bitter melon supplementation in obesity and related complications in metabolic syndrome. J Lipid Res 49:61–69Google Scholar
  4. Alam S, Asad SM, Asdaq M, Prasad SM et al (2009) Antiulcer activity of methanolic extract of Momordica charantia L in rats. J Ethnopharmacol 123(3):464–469PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ali L, Khan L, Mamun AK, Mosihuzzaman MI, Nahar N et al (1993) Studies on hypoglycemic effects of fruit pulp, seed, and whole plant of Momordica charantia on normal and diabetic model rats. Planta Med 59:408–412PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aljohi A, Matou-Nasri S, Ahmed N (2016) Antiglycation and antioxidant properties of Momordica Charantia. PLoS One 11PubMedPubMedCentralCrossRefGoogle Scholar
  7. Aziz M, Karboune S (2016) Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables. Crit Rev Food Sci Nutr 58(3):486–511Google Scholar
  8. Bai J, Zhu Y, Dong Y (2016) Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L) in high fat diet induced obese rats. J Ethnopharmacol 16:378–387Google Scholar
  9. Bauri R, Tigga M, Kullu S (2015) A review on use of medicinal plants to control parasites. Indian J Nat Prod Resour 6:268–277Google Scholar
  10. Beloin N, Gbeassor M, Akpagana K, Hudson J, de Soussa K et al (2005) Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J Ethnopharmacol 96:49–55PubMedCrossRefGoogle Scholar
  11. Bhattacharya KS, Muhammad N, Steele R, Peng G, Ray RB (2016) Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget 22:33202–33209Google Scholar
  12. Biswas AR, Ramaswamy S, Bapna JS (1991) Analgesic effect of Momordica charantia seed extract in mice and rats. J Ethnopharmacol 31:115–118PubMedCrossRefGoogle Scholar
  13. Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R et al (2003) Discovery of JSI-124 (Cucurbitacin I), a selective Janus kinase/ signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Can Res 63:1270–1279Google Scholar
  14. Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19:2474–2488PubMedCrossRefGoogle Scholar
  15. Bowman T, Yu H, Sebti S, Dalton W, Jove R (1999) Signal transducers and activators of transcription: novel targets for anticancer therapeutics. Cancer Control 6:427–435PubMedGoogle Scholar
  16. Braca A, Siciliano T, D’Arrigo M, Germanò MP (2008) Chemical composition and antimicrobial activity of Momordica Charantia seed essential oil. Fitoterapia 79(2):123–125PubMedCrossRefPubMedCentralGoogle Scholar
  17. Brandao DO, Guimaraes GP, Santos RL (2016) Model analytical development for physical, chemical, and biological characterization of Momordica Charantia vegetable. Drug J Anal Meth Chem 75:282–297Google Scholar
  18. Cao H, Sethumadhavan K, Grimm CC, Ullah AH (2014) Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica Charantia). PLoS ONE 9(9):106–113Google Scholar
  19. Chao CY, Sung PJ, Wang WH, Kuo YH et al (2014) Anti-inflammatory effect of Momordica Charantia in sepsis mice. Molecules 19(8):12777–12788PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chao CY, Yin MC, Huang CJ (2011) Wild bitter gourd extract up-regulates mRNA expression of PPARα, PPARγ and their target genes in C57BL/6 J mice. J Ethnopharmacol 135(1):156–161PubMedCrossRefGoogle Scholar
  21. Chaturvedi P (2009) Bitter melon protects against lipid peroxidation caused by immobilization stress in albino rats. Intl J Vit Nutr Res 79(1):48–56CrossRefGoogle Scholar
  22. Chaturvedi P (2012) Antidiabetic potentials of Momordica charantia: Multiple mechanisms behind the effects. J Med Food 15(2):101–107PubMedCrossRefGoogle Scholar
  23. Chaturvedi P, George S, Milinganyo M, Tripathi YB (2004) Effect of Momordica charantia on lipid profile and oral glucose tolerance in diabetic rats. Phytother Res 18:954–956PubMedCrossRefGoogle Scholar
  24. Chen Q, Li ET (2005) Reduced adiposity in bitter melon (Momordica charantia)–fed rats is associated with increased lipid oxidative enzyme activities and uncoupling protein expression. J Nutr 135:2517–2523PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chen J, Tian R, Qiu M, Lu L, Zheng Y, Zhang Z (2008) Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica Charantia. Photochemistry 69(4):1043–1048CrossRefGoogle Scholar
  26. Chen Q, Chan L, Li E (2003) Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin and normalizes glucose tolerance in rats fed a high fat diet. J Nutr 133:1088–1093PubMedPubMedCentralCrossRefGoogle Scholar
  27. Choi J, Lee KT, Jung H, Park HS (2002) Anti-rheumatoid arthritis effect of the Kochia scoparia fruits and activity comparison of momordin lc, its prosapogenin and sapogenin. Arch Pharmacol Res 25:336–342CrossRefGoogle Scholar
  28. Chunthorng-Orn J, Panthong S, Itharat A (2012) Antimicrobial, antioxidant activities and total phenolic content of Thai medicinal plants used to treat HIV patients. J Med Ass Thai 95(1):154–158Google Scholar
  29. Dandawate PR, Subramaniam D, Padhye SB, Anant S (2016) Bitter melon: A panacea for inflammation and cancer. Chin J Nat Med 14(2):81–100PubMedPubMedCentralGoogle Scholar
  30. Dans AML, Villarruz MW (2007) The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J Clin Epidemiol 60:554–559PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dar UK, Owais F, Ahmad M, Rizwani GH (2014) Biochemical analysis of the crude extract of Momordica Charantia (L). J Pharmaceut Sci 27(6):2237–2240Google Scholar
  32. Deep G, Dasgupta T, Rao AR, Kale RK (2004) Cancer preventive potential of Momordica charantia L against benzo(a)pyrene induced fore-stomach tumourigenesis in murine model system. J Exp Biol 42:319–322Google Scholar
  33. Dinan L, Harmatha J, Lafont R (2001) Chromatographic procedure for the isolation of plant steroids. J Chromatogr A 935:105–123PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dong Y, Lu B, Zhang X, Zhang J, Lai L et al (2010) Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2 mediated JAK2/ STAT3 signaling pathway. Carcinogenesis 31:2097–2104PubMedCrossRefPubMedCentralGoogle Scholar
  35. Duangmano S, Dakeng S (2010) Antiproliferative effects of cucurbitacin B in breast cancer cells: down-regulation of the c-myc/htert/telomerase pathway and obstruction of the cell cycle. Intl J Mol Sci 11:5323–5338CrossRefGoogle Scholar
  36. Duncan KL, Duncan MD, Alley MC, Sausville EA (1996) Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem Pharmacol 52:1553–1560PubMedCrossRefPubMedCentralGoogle Scholar
  37. Escandell JM, Kaler P, Recio MC, Sasazuki T, Shirasawa S et al (2008) Activated kRas protects colon cancer cells from Cucurbitacin-induced apoptosis: the role of p53 and p21. Biochem Pharmacol 76:198–207PubMedPubMedCentralCrossRefGoogle Scholar
  38. Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid oxidation products. Amer J Clin Nutr 57(Suppl 5):779S–785SPubMedCrossRefPubMedCentralGoogle Scholar
  39. Faden AI, Loane DJ (2015) Chronic neurodegeneration after traumatic brain injury: alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation. Neurotherapeut 12(1):143–150CrossRefGoogle Scholar
  40. Fan JM, Zhang Q, Xu J, Zhu S, Ke T et al (2009) Inhibition on hepatitis B virus in-vitro of recombinant MAP30 from bitter melon. Mol Biol Rep 36(2):381–388PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fan X, He L, Meng Y, Li G, Li L, Meng Y (2015) Α-MMC and MAP30, two ribosome-inactivating proteins extracted from momordica charantia, induce cell cycle arrest and apoptosis in a549 human lung carcinoma cells. Mol Med Rep 11(5):3553–3558PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fernandes NPC, Lagishetty CV, Panda VS, Naik SR (2007) An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica charantia fruit extract. BMC Complem Altern Med 7:29–33CrossRefGoogle Scholar
  43. Ferrándiz ML, Alcaraz MJ (1991) Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids agents actions. Springer 32:283–288Google Scholar
  44. Frohne D (1983) A coloured atlas of poisonous plants. Wolf, LondonGoogle Scholar
  45. Gadang V, Gilbert W, Hettiararchchy N, Horax R, Katwa L et al (2011) Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κb expression, and alleviates the symptoms associated with metabolic syndrome. J Med Food 14(1–2):86–93PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gbedema SY, Bayor MT, Annan K, Wright CW (2015) Clerodane diterpenes from Polyalthia longifolia (Sonn) Thw var pendula: potential antimalarial agents for drug resistant Plasmodium falciparum infection. J Ethnopharmacol 169:176–182PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gil MI, Tomás-Barberán FA, Hess-Pierce B, Kader AA (2002) Antioxidant capacities, phenolic compounds, carotenoids, and vitamin c contents of nectarine, peach, and plum cultivars from California. J Agri Food Chem 50:4976–4982CrossRefGoogle Scholar
  48. Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of Momordica charantia—a review. J Ethnopharmacol 93:123–132CrossRefGoogle Scholar
  49. Gupta M, Gautam S, Ajay Y, Bhaduria R (2011) Review a article Momordica charantia Linn (Karela): nature’ s silent healer. Intl J Pharm Sci Rev Res 11(1):32–37Google Scholar
  50. Gupta S, Raychaudhuri B, Banerjee S, Mukhopadhaya S, Datta SC (2010) Momordicatin purified from fruits of Momordica charantia is effective to act as a potent antileishmania agent. Parasitol Intl 59(2):192–197CrossRefGoogle Scholar
  51. Harinantenaina L, Tanaka M, Takaoka S, Oda M, Mogami O et al (2006) Momordica charantia constituents and antidiabetic screening of the isolated major compounds. Chem Pharm Bull 54:1017–1021PubMedCrossRefPubMedCentralGoogle Scholar
  52. Higashio H (2002) Value adding technologies to commodities in vegetable production. Res J Food Agri 25:8–22Google Scholar
  53. Hrckova G, Velebny S (2013) Pharmacological potential of selected natural compounds in the control of parasitic diseases brief in pharmaceutical science and drug development: parasitic Helminths of humans and animals: Health impact and control. Springer, Vienna, pp 29–99Google Scholar
  54. Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L et al (2016) Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: a follow-up review. Pharmacol Res 114:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hussan F, Teoh SL, Muhamad N, Mazlan M, Latiff AA (2014) Momordica charantia ointment accelerates diabetic wound healing and enhances transforming growth factor-β expression. J Wound Care 23(8):404–407CrossRefGoogle Scholar
  56. Iglesias MA, Ye JM (2002) AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51:2886–2894PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ilhan M, Bolat IE (2015) Topical application of olive oil macerate of momordica charantia l promotes healing of excisional and incisional wounds in rat buccal mucosa. Arch Oral Biol 60(12):1708–1713PubMedCrossRefPubMedCentralGoogle Scholar
  58. Iqbal Z, Mufti K, Khan M (2004) Anthelmintic effects of condensed tannins. Intl J Agri Biol 4:438–440Google Scholar
  59. Jain P, Singh S, Singh S, Verma S, Kharya M, Solanki S (2013) Anthelmintic potential of herbal drugs international. J Res Dev 2:412–417Google Scholar
  60. Jayaprakasam B, Seeram NP, Nair MG (2003) Anticancer and anti-inflammatory activities of cucurbitacins from Cucurbita andreana. Cancer Lett 189:11–16PubMedCrossRefPubMedCentralGoogle Scholar
  61. Jianchao C, Renrong T, Qiu M, Lu L, Yongtang Z, Zhang Z (2008) Trinorcucurbitane and cucurbitane triterpenoids from the roots of Momordica charantia. Phytochemistry 69:1043–1048CrossRefGoogle Scholar
  62. Jorn G, Inge S, Hans CA (2006) Cucurbitacins in plant food. TemaNord 2006:556Google Scholar
  63. Kai H, Akamatsu E, Torii E, Kodama E, Yukizaki H, Matsuno K et al (2011) Inhibition of proliferation by agricultural plant extracts in seven human adult T-cell leukaemia (atl)-related cell lines. J Nat Sci 65(3–4):651–655Google Scholar
  64. Kamal R, Yadav S, Mathur M, Katariya P (2011) Antiradical efficiency of 20 selected medicinal plants. J Nat Prod 26(11):1054–1062CrossRefGoogle Scholar
  65. Kamath CC, Vickers KS, Ehrlich A, McGovern L, Johnson J et al (2008) Behavioral interventions to prevent childhood obesity: a systematic review and meta analyses of randomized trials. J Clin Endo Meta 93(12):4606–4615CrossRefGoogle Scholar
  66. Kappagoda S, Singh U, Blackburn BG (2011) Antiparasitic therapy. Mayo Clin Proc 86:561–583PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kavitha N, Babu SM, Rao ME (2011) Influence of Momordica charantia on oxidative stress-induced perturbations in brain monoamines and plasma corticosterone in albino rats. Indian J Pharmacol 43(4):424–428PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kee HC, Hongtao X (2008) Methods of inducing apoptosis in cancer treatment by using cucurbitacins. US2008/0207578A1: 28Google Scholar
  69. Kobori M, Nakayama H, Fukushima K, Ohnishi-Kameyama M et al (2008) Bitter gourd suppresses lipopolysaccharide-induced inflammatory responses. J Agri Food Chem 56:4004–4011CrossRefGoogle Scholar
  70. Konishi T, Satsu H, Hatsugai Y, Aizawa K, Inakuma T, Nagata S et al (2004) Inhibitory effect of a bitter melon extract on the p-glycoprotein activity in intestinal caco-2 cells. Br J Pharmacol 143:379–387PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kumar KPS, Bhowmik D (2010) Traditional medicinal uses and therapeutic benefits of Momordica charantia Linn. Intl J Pharmaceut Sci Rev Res 4(3):23–28Google Scholar
  72. Laverdure S, Polakowski N, Hoang K, Lemasson I (2016) Permissive sense and antisense transcription from the 5′ and 3′ long terminal repeats of human t-cell leukemia virus type 1. J Virol 90(7):3600–3610PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li Y, Xu C, Yang XJ, Wu XG et al (2016) One New 19-nor cucurbitane-type triterpenoid from the stems of Momordica charantia. Nat Prod Res 30(8):973–978PubMedCrossRefPubMedCentralGoogle Scholar
  74. Limtrakul P, Khantamat O, Pinth K (2004) Inhibition of p-glycoprotein activity and reversal of cancer multidrug resistance by Momordica charantia extract. Cancer Chemother Pharmacol 54:525–530PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lin J, Tang C (2008) Strawberry, loquat, mulberry, and bitter melon juices exhibit prophylactic effects on LPS-induced inflammation using murine peritoneal macrophages. Food Chem 107:1587–1596CrossRefGoogle Scholar
  76. Liu T, Zhang M, Zhang H, Sun C, Deng Y (2000) Inhibitory effects of Cucurbitacin B on laryngeal squamous cell carcinoma. Eur Arch Otorhinolaryngol 265:1225–1232CrossRefGoogle Scholar
  77. Liu C, Cai D, Zhang L, Tang W, Yan R, Guo H et al (2016) Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepsatitis B virus covalently closed circular DNA. Antiviral Res 134:97–107PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu JQ, Chen JC, Wang CF, Qiu MH (2009) New Cucurbitane triterpenoids and steroidal glycoside from Momordica charantia. Molecules 14(12):4804–4813PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu XR, Deng ZY, Fan YW, Li J, Liu ZH (2010) Mineral elements analysis of Momordica charantiap seeds by ICP-AES and fatty acid profile identification of seed oil by GC-MS. Guang Pu Xue Yu Guang Pu Fen Xi 30(8):2265–2268Google Scholar
  80. Martínez-Abundis E, Mendez-Del Villar M, Perez R et al (2016) Novel nutraceutic therapies for the treatment of metabolic syndrome. World J Diabetes 7(7):142–152PubMedPubMedCentralCrossRefGoogle Scholar
  81. Maurya P, Sharma P, Mohan L, Batabyal L, Srivastava CN (2009) Evaluation of larvicidal nature of fleshy fruit wall of Momordica charantia Linn (family: cucurbitaceae) in the management of mosquitoes. J Parasitol Res 105(6):1653–1659CrossRefGoogle Scholar
  82. Melzig MF, Bader G, Loose R (2001) Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 67:43–48PubMedCrossRefPubMedCentralGoogle Scholar
  83. Meng Y, Lin S, Liu S, Fan X, Li G, Meng YA (2014) Novel method for simultaneous production of two ribosome-inactivating proteins, α-mmc and map30, from Momordica charantia L. PLoS ONE 9(7):101–109Google Scholar
  84. Mesia GK, Tona GL, Nanga TH, Cimanga RK, Apers S, Cos P et al (2008) Antiprotozoal and cytotoxic screening of 45 plant extracts from democratic republic of congo. J Ethnopharmacol 115(3):409–415PubMedCrossRefPubMedCentralGoogle Scholar
  85. Mwambete KD (2009) The In-vitro antimicrobial activity of fruit and leaf crude extracts of momordica charantia: a tanzania medicinal plant. Afr Health Sci 9(1):34–39PubMedPubMedCentralGoogle Scholar
  86. Nagasawa H, Watanabe K, Inatomi H (2002) Effects of bitter melon (Momordica charantia L) or ginger rhizome (Zingiber offifinale) on spontaneous mammary tumorigenesis in SHN mice. Amer J Chin Med 30:195–205CrossRefGoogle Scholar
  87. Namsa ND, Mandal M, Tangjang S, Mandal SC (2011) Ethnobotany of the monpa ethnic group at Arunachal Pradesh, India. J Ethnobiol Ethnomed 7:31–37PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nerurkar PV, Lee YK, Nerurkar VR (2010) Momordica charantia (Bitter Melon) inhibits primary human adipocyte differentiation by modulating adipogenic genes. BMC Complem Altern Med 10:34CrossRefGoogle Scholar
  89. Nhiem NX, Yen PH, Ngan NT, Quang TH, Van-Kiem P et al (2012) Inhibition of nuclear transcription factor-κB and activation of peroxisome proliferator-activated receptors in Hepg2 cells by cucurbitane-type triterpene glycosides from Momordica charantia. J Med FoodGoogle Scholar
  90. Olasehinde GI, Ojurongbe O, Adeyeba A, Fagade O et al (2014) In-vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts. Malaria J 13:63CrossRefGoogle Scholar
  91. Padmashree A, Sharma GK, Semwal AD, Bawa AS (2011) Studies on the antioxygenic activity of bitter gourd (momordica charantia) and its fractions using various In-vitro models. J Sci Food Agri 91(4):776–782CrossRefGoogle Scholar
  92. Pandit S, Kanjilal S, Awasthi A, Chaudhary A, Banerjee D, Bhatt BN et al (2016) Evaluation of herb-drug interaction of a polyherbal ayurvedic formulation through high throughput cytochrome p450 enzyme inhibition assay. J Ethnobiol Ethnopharmacol 16:304–308Google Scholar
  93. Park CS, Lim H, Han KJ, Baek SH, Sohn HO, Lee DW et al (2004) Inhibition of nitric oxide generation by 23,24-dihydrocucurbitacin D in mouse peritoneal macrophages. J Pharmacol Exp Therapeut 309:705–710CrossRefGoogle Scholar
  94. Phillips EA, Sexton DW, Steverding D (2013) Bitter melon extract inhibits proliferation of Trypanosoma brucei bloodstream forms in vitro experimental. Parasitology 133(3):353–356Google Scholar
  95. Pongnikorn S, Fongmoon D, Kasinrerk W Limtrakul (2003) Effect of bitter melon (Momordica charantia Linn) on level and function of natural killer cells in cervical cancer patients with radiotherapy. J Med Assoc Thai 86:61–68PubMedGoogle Scholar
  96. Prabhakar K, Kumar LS, Rajendran S, Chandrasekaran M, Bhaskar K, Sajit-Khan AK (2008) Antifungal activity of plant extracts against candida species from oral lesions. Indian J Pharma Sci 70(6):801–803CrossRefGoogle Scholar
  97. Puri R, Sud R, Khaliq A, Kumar M, Jain S (2011) Gastrointestinal toxicity due to bitter bottle gourd (Lagenaria Siceraria)—A report of 15 cases. J Gastroenterol 30(5):233–236Google Scholar
  98. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S (2011) Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules 16(4):3433–3443PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rajeswari V (2014) Anthelmintic activity of plants: a review. Res J Phytochem 8:57–63CrossRefGoogle Scholar
  100. Raman A, Lau C (1996) Anti-diabetic properties and phytochemistry of Momordica charantia L (Cucurbitaceae). Phytomedicine 2(4):349–362CrossRefGoogle Scholar
  101. Rawlings CR, Fremlin GA, Nash J, Harding KA (2016) Rheumatology perspective on Cutaneous vasculitis: assessment and investigation for the non-rheumatologist. Intl Wound J 13(1):17–21CrossRefGoogle Scholar
  102. Rehm S (1957) Bitter principles of the Cucurbitaceae VII the distribution of bitter principles in this plant family. J Sci Food Agri 8:679–686CrossRefGoogle Scholar
  103. Saba AB, Oridupa AO (2010) Search for a novel antioxidant, anti-inflammatory/analgesic or anti-proliferative drug: Cucurbitacins. J Med Plants Res 4:2821–2826Google Scholar
  104. Sabourian R, Karimpour-Razkenari E, Saeedi M, Bagheri MS et al (2016) Medicinal plants used in Iranian traditional medicine as contraceptive agents. Curr Trends Biotechnol Phar 17(11):974–985CrossRefGoogle Scholar
  105. Sagor AT, Chowdhury MR, Tabassum N, Hossain H, Rahman MM, Alam MA (2015) Supplementation of fresh ucche (momordica charantia l var muricata willd) prevented oxidative stress, fibrosis and hepatic damage in ccl4 treated rats. BMC Complem Altern Med 15:115CrossRefGoogle Scholar
  106. Santos KK, Matias EF, Sobral-Souza CE, Tintino SR, Morais B et al (2012) Trypanocide, cytotoxic, and antifungal activities of Momordica charantia. Pharm Biol 50(2):162–166PubMedCrossRefGoogle Scholar
  107. Sathishsekar D, Subramanian S (2005) Beneficial effects of Momordica charantia seeds in the treatment of STZ-induced diabetes in experimental rats. Biol Pharm Bull 28:978–983PubMedCrossRefGoogle Scholar
  108. Sato M, Ueda T, Nagata K, Shiratake S, Tomoyori H, Kawakami M et al (2011) Dietary Kakrol (Momordica Dioica Roxb.) flesh inhibits triacylglycerol absorption and lowers the risk for development of fatty liver in rats. Exp Biol Med 236(10):1139–1146CrossRefGoogle Scholar
  109. Senanayake GV, Maruyama M, Sakono M, Fukuda N, Morishita T, Yukizaki C, Kawano M, Ohta H (2004) The effects of bitter melon (Momordica charantia) extracts on serum and liver lipid parameters in hamsters fed cholesterol-free and cholesterol-enriched diets. J Nutr Sci Vitaminol 50:253–257PubMedCrossRefGoogle Scholar
  110. Shodehinde SA, Adefegha SA, Oboh G, Oyeleye SI, Olasehinde TA et al (2016) Phenolic composition and evaluation of methanol and aqueous extracts of bitter gourd (momordica charantia l) leaves on angiotensin-i-converting enzyme and some pro-oxidant-induced lipid peroxidation in vitro evidence–based. Complem Altern Med 21(4):67–76Google Scholar
  111. Singh A, Singh SP, Bamezai R (1998) Momordica charantia (bitter gourd) peel, pulp, seed and whole fruit extract inhibits mouse skin papillomagenesis. Toxicol Lett 94:37–46PubMedCrossRefGoogle Scholar
  112. Singh R, Kumar A, Singh ML, Maurya SK, Pandey KD (2017) Microbial diversity in the rhizosphere of Momordica charantia L (bitter gourd). Intl J Curr Micro Appl Sci 6(2):67–76CrossRefGoogle Scholar
  113. Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM, Cucurbitacin Q (2005) A selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 24:3236–3245PubMedCrossRefGoogle Scholar
  114. Tabackman AA, Frankson R, Marsan ES, Perry K, Cole KE (2016) Structure of ‘linkerless’ hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket. J Struc 195(3):373–378CrossRefGoogle Scholar
  115. Tambor M, Pavlova M, Golinowska S, Arsenijevic J, Groot W (2016) Financial incentives for a healthy life style and disease prevention among older people a systematic literature review. Health Serv Res 16(5):426CrossRefGoogle Scholar
  116. Tan MJ, Ye JM, Turner N, Hohen Behrens C, Ke CQ, Tang CP et al (2008) Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol 15:263–273PubMedCrossRefPubMedCentralGoogle Scholar
  117. Tannin-Spitz T, Bergman M, Grossman S (2007) Cucurbitacin glucosides: antioxidant and free-radical scavenging activities. Biochem Biophys Res Commun 364:181–186PubMedCrossRefPubMedCentralGoogle Scholar
  118. Thenmozhi AJ, Subramanian P (2012) Antioxidant potential of Momordica charantia in ammonium chloride-induced hyperammonemic rats. J Evid-Based Complem Altern Med 2011:1–7Google Scholar
  119. Turkson J, Jove R (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19(66):13–26Google Scholar
  120. Veerakumari L (2015) Botanical anthelmintics. Asian J Sci Technol 6:1881–1894Google Scholar
  121. Virdi J, Sivakami S, Shahani S, Suthar AC, Banavalikar MM et al (2003) Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol 88:107–111PubMedCrossRefPubMedCentralGoogle Scholar
  122. Wang BL, Zhang WJ, Zhao J, Wang FJ, Fan LQ, Wu YX, Hu ZB (2010) Gene cloning and expression of a novel hypoglycemic peptide from Momordica charantia. J Sci Food Agri 91(13):2443–2448CrossRefGoogle Scholar
  123. Welihinda J, Karunanayake EH (1986) Extra-pancreatic effects of Momordica charantia in rats. J Ethnopharmacol 17:247–255PubMedCrossRefPubMedCentralGoogle Scholar
  124. Williams A, Fryganas C, Ramsay A, Mueller-Harvey I, Thamsborg S (2014) Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PLoS ONE 9:997Google Scholar
  125. Wink M (2012) Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 17:12771–12791PubMedPubMedCentralCrossRefGoogle Scholar
  126. Xu X, Shan B, Liao CH, Xie JH, Wen PW, Shi JY (2015) Anti-diabetic properties of Momordica charantia l polysaccharide in alloxan-induced diabetic mice. Intl J Biol Sci 81:538–543Google Scholar
  127. Yadav BS, Yadav R, Yadav RB, Garg M (2016) Antioxidant activity of various extracts of selected gourd vegetables. J Food Sci 53(4):1823–1833Google Scholar
  128. Yaldız G, Sekeroglu N, Kulak M, Demirkol G (2015) Antimicrobial activity and agricultural properties of bitter melon (Momordica charantia l) grown in northern parts of Turkey: a case study for adaptation. Nat Prod Res 29(6):543–545PubMedCrossRefPubMedCentralGoogle Scholar
  129. Yang SJ, Choi JM, Park SE, Rhee EJ, Lee WY et al (2015) Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-ΚB and JNK pathways in high-fat-fed oletf rats. J Nutr Biochem 26(3):234–240PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, Tanaka T, Miyashita K (2005) Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis 196 S P TAN ET AL and up-regulates the GADD45, p53 and PPARγ in human colon cancer Caco-2 cells. Prostaglandins Leukotrienes Essent Fatty Acids 73:113–119CrossRefGoogle Scholar
  131. Ye JM, Ruderman NB, Kraegen EW (2005) AMP-activated protein kinase and malonyl-CoA: targets for treating insulin resistance. Drug Discov Today Therap Strateg 2:157–163CrossRefGoogle Scholar
  132. Yehye WA, Abdul RN, Saad O, Ariffin A, Hamid SB et al (2016) Rational design and synthesis of new, high efficiency, multipotent schiff base-1,2,4-triazoleantioxidants bearing butylated hydroxytoluene moieties. Molecules 21(7):84–87CrossRefGoogle Scholar
  133. Yoon YA, Kim H, Lim Y, Shim YH (2006) Relationships between the Larval growth inhibition of Caenorhabditis elegans by apigenin derivatives and their structures archives. Pharma Res 29:582–586Google Scholar
  134. Yuan G, Mark LW, Guoqing H, Min Y, Li D (2006) Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 15:143–152PubMedPubMedCentralGoogle Scholar
  135. Zhu ZJ, Zhong ZC, Luo ZY, Xiao ZY (1990) Studies on the active constituents of Momordica charantia L. Yao Xue Xue Bao 25:898–903PubMedPubMedCentralGoogle Scholar
  136. Zhu F, Zhang P (2013) Alpha-Momorcharin, a RIP produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in-vitro. Planta 237(1):77–88PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Pharmaceutical Education and ResearchNew DelhiIndia

Personalised recommendations